

Advancing Driver Safety: An Investigation into Innovations in **Drowsiness Detection and Design of System-Initiated Interventions**

YoonHo Kim, Suzan Ayas, Birsen Donmez

Department of Mechanical and Industrial Engineering, Human Factors and Applied Statistics Laboratory

Human Factors & Applied Statistics Laboratorv

MOTIVATION (1)

- Estimated 96000 drowsy-driving related crashes, with 52000+ injuries and 800+ fatalities in two-year span [1]
- Drowsy-driving crashes make up 21% of all fatal crashes, in comparison to 8% by distracted driving [1]

- Significant gap in the literature exists for designing and evaluating system-initiated interventions that utilize driver state detection systems [2] [3] [4]
- Variations in ground truths, lack of • standardization in evaluation process, and sensor and modelling issues indicate the need for further research in this area [2] [3] [4]

Developing an accessible research tool to allow others to reliably test their own interventions

Designing a system-initiated in-vehicle intervention and to evaluate its effectiveness in positively changing driver behavior through a driving simulation experiment

REFERENCES
V., Richard, C. M., Magee, K., & Johnson, K. (2021, July). Countermeasures that work: A highway safe guide for State Highway Safety Offices, 10th edition, 2020 (Report No. DOT HS 813 097). National Hi inistration.
021a). A review of Heartbeat Detection Systems for automotive applications. Sensors, 21(18), 6112. Isheddy, A. (2020). Driver fatigue detection systems using multi-sensors, smartphone, and cloud-bas rms: A comparative analysis. Sensors, 21(1), 56.
, Shankaran, R., Kavakli, M., & Haque, Md. M. (2018). Sensor applications and physiological features tion: A Review. <i>IEEE Sensors Journal</i> , <i>18</i> (8), 3055–3067. Akbar, H. (2018). Driver drowsiness detection based on face feature and perclos. <i>Journal of Physics</i> :
, Shankaran, R., Kavakli, M., & Haque, Md. M. (2018). Sensor applications and physiological features ion: A Review. IEEE Sensors Journal, 18(8), 3055–3067.

Conference Series, 1090, 01203 G) Uchiyama, Y., Sawai, S., Omi, T., Yamauchi, K., Tamura, K., Sakata, T., Nakajima, K., & Sakai, H. (2023). Convergent validity of video-based observer rating of drowsiness, against subjective, behavioral, and physiological measures, PLOS ONE, 18(5

1) Venkatramar

Fraffic Safety Adm [2] Arakawa, T. (2

3] Abbas, Q., & A

Computing Platfor [4] Chowdhury, A.

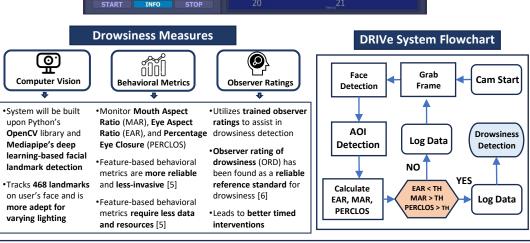
(5) Junaedi, S., & /

(3) METHODOLOGY

Experiment will be conducted on a NADS miniSim[™] driving simulator and Drowsiness Rating and Intervention Verification (DRIVe) System.

- Monotonous driving scenario in rural highway setting to induce drowsiness
 - Begin rating drowsiness after 20 minutes, in regular intervals
- Interventions will be activated and evaluated upon drowsiness

detection


Live Observing

Rating System

Database

Storage

(4) **FUTURE STEPS**

Driver Drowsiness

 Test system for reliability in accurately detecting driver drowsiness and intervening at appropriate times

Drowsiness Intervention

· Testing two different types of interventions to test their effectiveness

1. Assistance

2. Cognitive task

Data Collection

Live Video

Feed

0

Live Data

Visualization

• Finish data collection; statistical analysis on the before and after effects of the interventions

Increase Flexibility

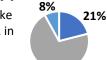
Moving the DRIVe system out from a controlled setting to a less controlled, real-world situation

(5) PLANNED ANALYSIS

After data collection, will be analyzing:

- Drowsiness Levels Measures (EAR, PERCLOS)
- Vehicle Measures (Speed, Steering Wheel Movement, Lane Deviation)
- Physiological Data (Heart Rate, Galvanic Skin Response)

Numerical data will undergo quantitative and statistical analysis. Specific methods will be determined based on experimental results.



Drowsiness Data Vehicular Data Physiological Data

ACKNOWLEDGEMENTS

We would like to thank Shabab Salam. Yichen Mao, and Zeina Shaltout for their contributions to the development of the DRIVe system.

