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Abstract 

Decision making in emergency medical dispatch is difficult due to the high time pressure and 

uncertainty faced by dispatchers. This is especially true in large-scale medical transport systems, 

such as Ornge in Ontario, because of the large geographical area serviced and the limited air and 

land ambulance resources available. Oversight agencies have highlighted the need to support 

patient transport time prediction for different transport options to facilitate better dispatch 

decisions. This dissertation proposes the use of visualizations of historical transport time data as 

a decision-aid to support predictions of patient transport time. Specifically, this dissertation 

examines whether visualizing the variability of historical data, which can help decision makers 

understand the uncertainty of the process, may improve transport time predictions.  

Historical time predictions recorded by Ornge were statistically analyzed and two field studies 

were conducted at Ornge. Transport time predictions were found to be an important part of the 

dispatch process, but they are often underestimated, and that dispatchers do not explicitly 

incorporate uncertainty information in their predictions, possibly due to time constraints. Based 

on these results, an interface and workflow for a decision-aid visualizing historical data was 

proposed. In order to support the design of this decision-aid, two experimental studies were 

conducted to examine the influence of display format and context information on prediction 

behavior. The experiments were based on a proposed framework, informed by the literature, for 

how individuals use historical data visualizations to predict values of a variable. The 

experimental results provided evidence that both display format and context information impact 

prediction behavior, however the underlying process used by the participants appeared to differ 
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from that suggested in the proposed framework. Thus, further research is needed to improve this 

framework.  

Overall, this dissertation adds to the very limited literature on supporting medical dispatch 

decisions through the design of a decision-aid for transport time prediction. In addition, this 

dissertation provides preliminary evidence for how individuals use visualizations of historical 

data to generate predictions of variables and what factors may influence these predictions. 



 

iv 

 

Acknowledgments 

This dissertation was a long journey and I was helped along by many more people than I can 

thank in these acknowledgements, so I just wanted to give my thanks and appreciation to 

everyone who has been part of my life over these past years for your loving support, friendship, 

and advice.  

In particular, I want to thank my family. Mom and Dad, I would not be the person I am or dared 

the dreams I have dreamt with your support. Also, to my younger sister Amanda, who I now go 

to for advice and guidance, I always tell everyone that you’re the real Professor Giang of the 

family. 

I would also like to thank all the current and former members of the Human Factors and Applied 

Statistics Lab. I knew it was time to graduate when I was counting the number of cohorts of 

master’s students that had graduated while I was doing my PhD rather than the years. Thank you 

for putting up with me all these years. 

Thank you, Ellen and Olivier, for taking part in my defense committee. The insights you 

provided me have opened new avenues of research that I’m excited to pursue in the future! 

To my committee, Mark and Greg, thank you for your guidance, support, and challenging me 

when I needed to be challenged (mostly about scope!). I know that I have become a better 

researcher, scholar, and member of the human factors community because of your advice. 

Finally, to my advisors. Russell, thank you for all your help, advice, and expertise over these last 

few years. You always knew how to focus and ground my research and helped keep me on track. 

Birsen, I have learned so much over the course of my PhD and I’m sure I will even learn more 

form you in the future. I’m looking forward to putting these lessons into practice in the future to 

make you proud. Thank you. 



 

v 

 

Table of Contents 

 

Acknowledgments.......................................................................................................................... iv 

Table of Contents .............................................................................................................................v 

List of Tables ...................................................................................................................................x 

List of Figures ............................................................................................................................... xii 

Chapter 1 ..........................................................................................................................................1 

1 Introduction .................................................................................................................................1 

1.1 Time Estimation in Medical Dispatch .................................................................................1 

1.2 Background and Scope of Dissertation ................................................................................2 

1.3 Research Questions ..............................................................................................................5 

1.4 Organization of Dissertation ................................................................................................5 

Chapter 2 ..........................................................................................................................................8 

2 Transfer Time Prediction in Interfacility Patient Transfers at Ornge .........................................8 

2.1 Interfacility Medical Transport in Ontario, Canada .............................................................8 

2.1.1 Dispatch Decisions and the Operations and Control Center ..................................10 

2.2 Decision Support for Emergency Medical Dispatch .........................................................12 

2.3 Time Prediction in Medical Dispatch Decision Making ....................................................13 

2.4 Previous work with Ornge .................................................................................................14 

2.5 Comparison of Dispatcher Predictions of Time to Definitive Care to Algorithm 

Predictions..........................................................................................................................16 

2.6 Improving Time Prediction by Supporting Human-Algorithm Collaboration ..................19 

Chapter 3 ........................................................................................................................................22 

3 Interfacility Medical Dispatch Decisions ..................................................................................22 

3.1 The Role of Uncertainty in Dispatcher Time Predictions ..................................................22 

3.1.1 Participants .............................................................................................................23 



 

vi 

 

3.1.2 Method and Procedure ...........................................................................................23 

3.1.3 Results and Discussion ..........................................................................................24 

3.2 Factors that Influence Dispatch Time Predictions .............................................................26 

3.2.1 Participants .............................................................................................................27 

3.2.2 Method and Procedure ...........................................................................................27 

3.2.3 Results and Discussion ..........................................................................................28 

3.3 Contextual Information in Medical Dispatch ....................................................................33 

3.3.1 Likelihood-Information..........................................................................................33 

3.3.2 Consequence-Information ......................................................................................34 

3.4 Conclusion .........................................................................................................................35 

Chapter 4 ........................................................................................................................................38 

4 Short-term Planning Tool for Ornge .........................................................................................38 

4.1 Goals for the Short-term Planning Tool .............................................................................38 

4.2 Current Short-term Planning Interface in FlightVector .....................................................39 

4.3 Short-term Planning Tool Interface ...................................................................................41 

4.4 Historical Data Visualizations ...........................................................................................43 

4.5 Conclusion .........................................................................................................................44 

Chapter 5 ........................................................................................................................................45 

5 Literature Review of Time Prediction using Visualizations of Historical Data .......................45 

5.1 Prediction of Future Values under Uncertainty .................................................................45 

5.1.1 Predictions Aided by Decision Support .................................................................46 

5.1.2 Contextual Information ..........................................................................................48 

5.1.3 Numeracy and Education .......................................................................................50 

5.2 Proposed Framework for Predictions of Time using Visualizations of Historical Data ....51 

5.2.1 Prediction behavior based on display format .........................................................52 

5.2.2 Prediction behavior based on context information ................................................54 



 

vii 

 

Chapter 6 ........................................................................................................................................57 

6 Influence of Display Format on Time Prediction .....................................................................57 

6.1 Experimental Scenario and Visualizations Tested .............................................................57 

6.2 Methods..............................................................................................................................59 

6.2.1 Experiment Design.................................................................................................59 

6.2.2 Participants .............................................................................................................60 

6.2.3 Experimental Tasks ................................................................................................60 

6.2.4 Procedure ...............................................................................................................62 

6.2.5 Dependent Variables and Statistical Analysis .......................................................63 

6.2.6 Hypotheses .............................................................................................................64 

6.3 Results ................................................................................................................................64 

6.3.1 Predictions on the Salient Central Tendency Point................................................64 

6.3.2 Direction of Prediction relative to the Salient Central Tendency Point .................65 

6.3.3 Distance between Prediction and the Salient Central Tendency Point ..................66 

6.3.4 Confidence in Predictions ......................................................................................67 

6.3.5 Prediction Probability ............................................................................................68 

6.3.6 Strategies for Prediction .........................................................................................69 

6.4 Discussion ..........................................................................................................................70 

6.5 Conclusion .........................................................................................................................72 

Chapter 7 ........................................................................................................................................75 

7 Influence of Contextual Information on Time Prediction .........................................................75 

7.1 Experimental Scenario and Visualizations Tested .............................................................75 

7.2 Methods..............................................................................................................................76 

7.2.1 Experiment Design.................................................................................................76 

7.2.2 Participants .............................................................................................................79 

7.2.3 Experimental Tasks ................................................................................................80 



 

viii 

 

7.2.4 Procedure ...............................................................................................................81 

7.2.5 Dependent Variables and Statistical Analysis .......................................................83 

7.2.6 Hypotheses .............................................................................................................83 

7.3 Results on Prediction Behavior ..........................................................................................84 

7.3.1 Predictions on the Salient Central Tendency Point................................................84 

7.3.2 Direction of Predictions relative to the Salient Central Tendency Point ...............84 

7.3.3 Distance between Prediction and the Salient Central Tendency Point ..................85 

7.3.4 Confidence in Predictions ......................................................................................87 

7.3.5 Summary of Prediction Behavior Results ..............................................................88 

7.4 Results on Prediction Strategy ...........................................................................................88 

7.4.1 Probability Rating and Prediction Location ...........................................................88 

7.4.2 Self-reported Impact of Contextual Information on Prediction Behavior .............91 

7.5 Discussion ..........................................................................................................................92 

7.6 Conclusion .........................................................................................................................95 

Chapter 8 ........................................................................................................................................96 

8 Overall Discussion of Experimental Studies.............................................................................96 

8.1 How do individuals use visualizations of historical data in making predictions? .............96 

8.1.1 What kind of prediction behavior do people exhibit when using visualizations 

of historical data? ...................................................................................................96 

8.1.2 How do people generate predictions when using visualizations of historical 

data? .......................................................................................................................99 

8.2 Recommendations for Ornge’s Short-term Planning Tool ..............................................100 

Chapter 9 ......................................................................................................................................101 

9 Conclusion and Future Work ..................................................................................................101 

References ....................................................................................................................................104 

Appendix A – Consent Documents for Field Studies ..................................................................113 

Appendix B – Dispatch Case Studies from Field Study 2 in Chapter 3 ......................................116 



 

ix 

 

Appendix C – Experimental Materials for Chapter 6 ..................................................................119 

Appendix D – Statistical Models for Chapter 6 ...........................................................................125 

Appendix E – Pilot Experiment on Visualization Effects on Estimation Behavior ....................150 

Appendix F – Experimental Materials for Chapter 7...................................................................155 

Appendix G – Statistical Models for Chapter 7 ...........................................................................162 

Appendix H – Prediction Strategy Tables for Chapter 7 .............................................................175 

Appendix I – Skewed Distribution Study (Chapter 7) .................................................................178 

Methods ...................................................................................................................................178 

Experiment Design...........................................................................................................178 

Participants .......................................................................................................................178 

Hypotheses .......................................................................................................................179 

Results on Prediction Behavior ...............................................................................................179 

Predictions on the Salient Central Tendency Point..........................................................179 

Direction of Predictions relative to the Salient Central Tendency Point .........................180 

Distance between Prediction and the Salient Central Tendency Point ............................180 

Confidence in Predictions ................................................................................................182 

Prediction Behavior .........................................................................................................182 

Results on Prediction Strategy ................................................................................................182 

Probability Rating and Prediction Location .....................................................................182 

Self-Reported Impact of Contextual Information on Prediction Behavior ......................185 

 



 

x 

 

List of Tables 

Table 1: Historical Data Visualizations ........................................................................................ 44 

Table 2: Experimental design for display format experiment ...................................................... 59 

Table 3: Experimental design for contextual information experiment ......................................... 77 

Table 4: The story excerpts used for each context condition ........................................................ 79 

Table 5: Participant prediction strategies across the three context conditions. The strategy used 

by the plurality of participants is bolded....................................................................................... 89 

Table 6: The type of prediction indicated by the majority of participants within each strategy 

category: optimistic (Opt), average (Ave), or pessimistic (Pes). The type of prediction represents 

the majority for both visualizations unless otherwise noted. Categories with no participants are 

labelled with 0, while the number of participants within each other strategy category is presented 

in Table 5. ..................................................................................................................................... 90 

Table 7: Number of participants who reported that they agreed with a statement that the 

additional information provided by the two context conditions impacted their time predictions 92 

Table 8: Percentage of participants who rated their predictions to be an Optimistic (O), Average 

(A), or Pessimistic (P) case for each of the 10 prediction strategies for symmetric historical data 

distributions................................................................................................................................. 175 

Table 9: Percentage of participants who rated their predictions to be an Optimistic (O), Average 

(A), or Pessimistic (P) case for each of the 10 prediction strategies for the Median-only 

visualization for right-skewed historical data distributions ........................................................ 176 

Table 10: Percentage of participants who rated their predictions to be an Optimistic (O), Average 

(A), or Pessimistic (P) case for each of the 10 prediction strategies for the Boxplot visualization 

for right-skewed historical data distributions ............................................................................. 177 

Table 11: Participant prediction strategies across the three context conditions. The strategy used 

by the plurality of participants is bolded..................................................................................... 184 



 

xi 

 

Table 12: The type of prediction indicated by the majority of participants within each strategy 

category: optimistic (Opt), average (Ave), or pessimistic (Pes). ................................................ 185 

Table 13: Number of participants who reported that they agreed with a statement that the 

additional information provided by the two context conditions impacted their time predictions for 

right-skewed distributions ........................................................................................................... 185 

 

 



 

xii 

 

List of Figures 

Figure 1: Ornge Bases in Ontario, Canada ................................................................................... 10 

Figure 2: Ornge’s dispatch process for an interfacility transfer (adapted from Fatahi, 2013) ...... 11 

Figure 3: Major steps and time intervals of interfacility transfers ................................................ 15 

Figure 4: Time to definitive care: actual times vs. (left) planner predictions, and (right) algorithm 

predictions. .................................................................................................................................... 18 

Figure 5: Histograms of prediction errors for air (left) and land (right) transfers for dispatcher 

(top) and algorithm (bottom) predictions. ..................................................................................... 18 

Figure 6: The Ornge Operations and Control Center (OCC) in 2014........................................... 23 

Figure 7: The Plan interface in FlightVector with proposed STP Estimates button indicated by 

the red arrow ................................................................................................................................. 40 

Figure 8: Waypoint interface from Flight Vector showing estimates for Time on Ground and 

Time En route highlighted in red .................................................................................................. 41 

Figure 9: The STP Tool Interface, with the Total Transfer Time Estimate section at the top, and 

the Individual Interval Estimates section below ........................................................................... 42 

Figure 10: Proposed framework for time predictions with decision support................................ 52 

Figure 11: Example of the influence of display format on predicted value .................................. 53 

Figure 12: Example of the influence of likelihood-information on predicted value .................... 55 

Figure 13: Example of the influence of consequence-information on the predicted value .......... 56 

Figure 14: The visualizations of historical data used in the experiment, with the x-axis 

representing task duration: a) Median-only, b) Mean & Standard Deviation, c) Boxplot, and d) 

Dotplot. The arrows and text in blue present the additional information provided to the 

participants during training. .......................................................................................................... 58 



 

xiii 

 

Figure 15: The prediction task ...................................................................................................... 61 

Figure 16: The probability rating task .......................................................................................... 62 

Figure 17: Statistical model estimates, odds and 95% CI, for the chosen predictions being on the 

saliently denoted central tendency point. Higher odds indicate greater likelihood. ..................... 65 

Figure 18: Percentage of trials with predictions above the salient central tendency point as 

opposed to below .......................................................................................................................... 66 

Figure 19: Statistical model estimates (means and 95% CI) for participants’ ratings of confidence 

in their predictions ........................................................................................................................ 67 

Figure 20: Statistical model estimates (means and 95% CI) for participants’ probability ratings of 

P (rover task duration ≤ predicted rover task duration) ................................................................ 69 

Figure 21: Example of the prediction task with the Boxplot visualization, with the likelihood-

information presented above the visualization of the historical data (highlighted with a red box 

for this figure). .............................................................................................................................. 78 

Figure 22: Example of the probability rating task with the Boxplot visualization and 

consequence-information. ............................................................................................................. 81 

Figure 23: Percentage of trials with predictions above the salient central tendency point as 

opposed to below .......................................................................................................................... 85 

Figure 24: Number of predictions within each distance category for each level of variability 

magnitude and context information .............................................................................................. 86 

Figure 25: Predictions made by participants assessed across two dimensions: their location 

relative to the salient central tendency point and the prediction probability. ............................... 89 

Figure 26: Percentage of trials with predictions above the salient central tendency point as 

opposed to below for right-skewed distributions ........................................................................ 180 



 

xiv 

 

Figure 27: Number of predictions within each distance category for each level of variability 

magnitude and context information with the Median-only visualization (left) and the Boxplot 

visualization (right) for right-skewed distributions .................................................................... 181 

Figure 28: Predictions made by participants assessed across two dimensions: their location 

relative to the salient central tendency point and the prediction probability for right-skewed 

distributions................................................................................................................................. 183 

 

 

 



1 

 

Chapter 1  

1 Introduction 

1.1 Time Estimation in Medical Dispatch 

Cognitive aids, such as decision support tools, have been used to improve human decision 

making behavior in a variety of safety critical domains. These aids can supplement or replace 

parts of the decision making process that have traditionally been the responsibility of a human 

decision-maker. One domain where cognitive aids may be particularly useful in is Emergency 

Medical Dispatch (EMD; Fletcher & Bedwell, 2017). EMD refers to the management of 

emergency medical resources, such as paramedics and ambulances, in responding to requests for 

assistance (Clawson & Dernocoeur, 1998). Dispatch decision making can be difficult to support 

due to the complexity of the work environment (Chow & Vicente, 2002; Wong, Hayes, & 

Moore, 2005) and the information processing limitations of the decision makers (Palmer, 2017). 

Such decisions are made in highly dynamic situations characterized by limited and uncertain 

information and high time pressure. When confronted with these dynamic situations, decision 

makers in general, often make non-optimal decisions (Payne, Bettman, & Johnson, 1993), which 

can have drastic consequences in safety critical or resource-intensive scenarios. 

In recognition of the pressures faced by EMD decision makers, better support for making 

medical dispatch decisions was one of the key recommendations of the Ontario Office of the 

Chief Coroner in a review of air ambulance related deaths in Ontario, Canada (Office of the 

Chief Coroner for Ontario, 2013). Specifically, the report highlighted the need to provide a list of 

possible transport options (e.g., fixed-wing aircraft, helicopter, and land ambulance transport 

options), along with expected transport times for each option, to key medical dispatch decision 

makers within Ornge, the primary provider of air medical transport in Ontario. In support of this 

recommendation, previous work has provided evidence that dispatchers often have difficulty 

producing accurate predictions of transfer times (Fatahi, Donmez, Ahghari, & MacDonald, 

2012). In particular, dispatchers at Ornge have been observed to underestimate the time required 

for transport using helicopters as well as land ambulances. This underestimation can result in 

misallocation of resources and inappropriate dispatch decisions.  
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Time estimation is a cognitive process that has been found to be highly influenced by cognitive 

biases, such as the planning fallacy (Buehler, Griffin, & Peetz, 2010). Previous research 

supporting the planning fallacy (Buehler, Griffin, & Ross, 1994; Kahneman & Tversky, 1982b) 

has found that individuals tend to cope with uncertainty while making time estimations by 

adopting a singular “case-based” approach, by considering the specifics of the situation at hand. 

However, this approach may lead to time underestimates because these estimates are generated 

by “constructing plans and scenarios, with some allowance of safety margins for unseen 

contingencies” (Kahneman & Tversky, 1982b, p. 152), and anchoring biases can result in more 

optimistic estimates (Kahneman & Tversky, 1982b). To avoid such cognitive biases, a 

distributional approach to considering uncertainty, which relies on the underlying frequencies of 

the event being considered may be more appropriate. Evidence-based decision making, which 

refers to the use of objective data to support the expertise of one or more decision makers, may 

help decision makers adopt a distributional approach. This dissertation proposes the use of 

visualizations of historical transfer time distributions to support evidence-based decision making 

in medical dispatch. Specifically, this dissertation aims to improve transport time predictions 

through the creation of a decision support tool for Ornge’s dispatchers that visualizes historical 

Ornge transport times. In addition, at a more theoretical level, this dissertation aims to contribute 

to the understanding of how individuals use visualizations of historical data to generate 

predictions of variables, such as time, within complex decision contexts. 

1.2 Background and Scope of Dissertation 

The use of evidence-based decision making has a long history in medicine (Sackett, Rosenberg, 

Gray, Haynes, & Richardson, 1996) and has begun to spread to other areas such as social and 

scientific policy (Dodge & Mandel, 2012), economics (Reiss, 2004), and business (Pfeffer & 

Sutton, 2006). Decisions made using this approach are concerned with predicting the outcome of 

future events in situations that are characterized by large degrees of complexity and uncertainty 

that cannot be deterministically modelled. The contrast between predictions based on expert (i.e., 

clinical) knowledge only and predictions made with objective evidence (i.e., statistical) has been 

well studied in medicine (Grove & Lloyd, 2006; Meehl, 1954). Statistical methods for helping 

predict future events tend to outperform clinical expertise because human decision makers can be 

unreliable and inconsistent in their decision processes and may sometimes resort to using 

inappropriate heuristics that bias their decisions (Dawes & Corrigan, 1974; Meehl, 1954). Expert 
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decision makers, however, may have information and expertise available that is difficult to 

model or codify into statistical models (Meehl, 1954). Previous research has shown that when an 

aid is properly designed, the combination of human expertise with a computational model can 

better support judgment under uncertainty compared to either alone (Miller, Kirlik, Kosorukoff, 

& Tsai, 2008). In situations where there is an asymmetrical distribution of information between a 

model and a human, as is the case in medical dispatch (e.g., physicians have knowledge about 

the medical condition of the patient), joint human-automation decision systems can outperform 

the models alone (Yaniv & Hogarth, 1993). Therefore, this dissertation adopts the approach of 

combining human expertise in medical dispatch with decision-aids that present visualizations of 

historical data to improve decision making behavior. These visualizations are expected to help 

the decision maker better understand the type of outcomes that have occurred in the past, and act 

as a reminder of the varying situations that may exist in the future.  

Emergency medical dispatch decision making can be categorized as short-term decision making. 

Short-term decision making deals with making judgments and predictions about specific future 

events (e.g., the current patient that requires transfer), with high time pressures often leading 

decision makers to rely on less information while also having fewer cognitive resources available 

to process the limited information available (Payne et al., 1993). One of the main challenges of 

effective evidence-based decision making in short-term, time-critical contexts is how well the 

decision makers are able to understand and use (or not use, as appropriate) the evidence that is 

available, given their limited time and cognitive resources. Therefore, this dissertation also 

explores how individuals interpret historical data visualizations to support their decision making. 

As mentioned previously, the Ontario Office of the Chief Coroner recommended that expected 

transport times be provided for all patient transport options in order to facilitate better dispatch 

decisions at Ornge (Office of the Chief Coroner for Ontario, 2013). While previous work at 

Ornge has generated a decision support algorithm that provides point-estimates for patient 

transport times using historical data (Fatahi, 2013), it did not assess how the algorithm 

predictions compared to dispatcher predictions. This dissertation presents statistical analysis 

comparing the algorithm performance to dispatcher performance and shows that the algorithm 

can outperform dispatchers. However, as stated earlier, a joint human-automation decision 

system may outperform either alone, especially for Ornge’s dispatchers who often have access to 

contextual information about the current transfer that is not available to the algorithm. Within the 
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Ornge context, historical transport duration data can reveal the underlying distribution of this 

variable of interest, including central tendency and dispersion (variability), providing to the 

dispatcher the range of possible values that the process generating the variable may produce 

(e.g., weather affecting medical transfer times). Previous research has shown that displaying 

uncertainty information in addition to a point-estimate of central tendency leads to better 

decision outcomes (Joslyn & Grounds, 2015; Joslyn, Nadav-Greenberg, & Nichols, 2009; Savelli 

& Joslyn, 2013). While previous studies have examined how paramedics (Harenčárová, 2015) 

and medical dispatchers (Wong & Blandford, 2002) cope with uncertainty during the course of 

their work, no research has examined how dispatchers understand and use uncertainty 

information to predict transport times. This dissertation addresses this research gap through two 

field studies conducted at Ornge. 

While uncertainty visualizations have been applied to many contexts, such as categorical 

uncertainty (Bisantz, Marsiglio, & Munch, 2005;  Bisantz et al., 2011; Finger & Bisantz, 2002; 

Neyedli, Hollands, & Jamieson, 2011), geographical/spatial uncertainty (Burton & Mccarley, 

2017; Kirlik, 2007; Pugh, Wickens, Herdener, Clegg, & Smith, 2017; Ruginski et al., 2016), and 

displaying meta-information (Bisantz et al., 2009, 2014; Guarino, Pfautz, Cox, & Roth, 2009), 

little research has focused on supporting the prediction of a variable from a historical data 

distribution. That is, earlier research focused on different types of tasks, e.g., predictions based 

on historical trends (e.g., hurricane trajectory) or classification of a system state (e.g., is the 

target friend or foe?), than the one found in medical dispatch. This dissertation addresses this 

research gap by examining how commonly used historical data visualizations (e.g., boxplots) are 

interpreted by individuals to support the prediction of future values of a variable, in particular 

patient transport times.  

Overall, this dissertation deals with three major bodies of literature (medical dispatch decision 

making, time estimation, and uncertainty visualization), and focuses on a specific set of problems 

within these large bodies of literature. Within the medical dispatch decision making literature, 

this dissertation focuses on supporting dispatchers in making more accurate transport time 

predictions for different transport options. Within the time estimation literature (i.e., how people 

estimate time), this dissertation focuses on time-estimation support through decision aids. 

Finally, within the uncertainty visualization literature, the focus is on commonly used 

visualizations for data distributions for a single random variable (i.e., transport time).  
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1.3 Research Questions 

This dissertation examines the following research questions: 

• Practical Research Questions: What is the role of patient transport time predictions in 

medical dispatch, and can information about the variability of historical transport times 

improve these predictions? 

• Theoretical Research Questions: How are commonly used historical data visualizations 

(e.g., boxplots) interpreted by individuals to support the prediction of future values of a 

variable, and what factors influence these predictions? 

The first set of research questions was addressed using a statistical analysis of historical transport 

time predictions produced by Ornge’s dispatchers and two field studies conducted at Ornge. The 

second set of research questions was addressed through two experimental studies that were 

conducted online with non-dispatcher participants.  

1.4 Organization of Dissertation 

This dissertation is organized into three sections: Understanding why and how to support the 

generation of transport time predictions in medical dispatch; Empirical studies on time prediction 

with visualizations of historical data; and Conclusions. The first section deals with the practical 

research questions listed above, while the second section deals with the theoretical questions. 

The chapter organization is as follows: 

Understanding Why and How to Support Time Prediction in Medical Dispatch: 

• Chapter 2 motivates the study of supporting time predictions in the emergency medical 

dispatch context. This chapter provides an introduction to interfacility medical transfers 

completed by Ornge, Ontario’s large-scale air and land medical transport service. An 

analysis of the accuracy of transport time predictions generated by dispatchers compared 

to predictions generated by an algorithm (built on historical data) is presented. The major 

contribution of this chapter is evidence that historical data can be used in an algorithm to 

produce prediction with less error than dispatchers. However, a joint human-automation 
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decision system may further improve transport time predictions. Portions of this chapter 

were published in Giang et al. (2014) in IEEE Transactions on Human-Machine Systems.  

• Chapter 3 presents two field studies with medical dispatchers at Ornge that examine the 

medical dispatch decision process; in particular, how dispatchers think about uncertainty 

and variability when generating transport time predictions. The major contribution of this 

chapter is evidence that uncertainty about transport times is not explicitly considered by 

dispatchers, even though transport time prediction is a key component of dispatch 

decision making. Furthermore, two categories of contextual factors considered by 

medical dispatchers that may influence transport time predictions are identified. Portions 

of this chapter were published in Giang et al. (2015), in Proceedings of the International 

Symposium on Human Factors and Ergonomics in Health Care, and Giang et al. (2016), 

in Proceedings of the 60th Annual Meeting of the Human Factors and Ergonomics 

Society. 

• Chapter 4 proposes a decision support tool for Ornge that incorporates visualizations of 

historical data to support the generation of transport time predictions. The tool is 

currently being implemented by Ornge. The evaluation of its effectiveness in operation is 

therefore left for future research.  

Empirical Studies of Time Prediction with Visualizations of Historical Data: 

• Chapter 5 presents background literature and relevant work on the use of visualizations of 

historical data and uncertainty visualizations as decision support. Based on this literature, 

a framework is proposed for how individuals predict variables, such as time, using 

visualizations of historical data. The framework covers the effects of display format, 

contextual information, and individual difference factors and proposes that individuals 

first interpret visualizations to generate an internal probability model of the historical data 

and then select a prediction based on this internal model. 

• Chapter 6 presents an empirical study that examined how different commonly-used 

visualizations influence time prediction behavior. Display format influences prediction 

behavior; more variability information leads to more deviations from the saliently 

presented central tendency point. However, even with no variability information, people 
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do deviate from the point-estimate; e.g., by making conservative predictions, suggesting 

that prediction behavior is also tied to factors outside of the information presented in the 

visualization. Further, the presence of variability information allowed participants to 

adjust their confidence in their predictions, which may have beneficial effects on how 

these predictions are used. 

• Chapter 7 presents a second empirical study that examined how the presence of 

contextual information, i.e., information that may be relevant to the situation in question 

but is not explicitly incorporated in the visualization, affects time prediction behavior and 

strategy. The contextual information tested was based on different types of contextual 

information observed in the field studies (i.e., those that change the likelihood of different 

outcomes, and those that change the consequence of different outcomes). The empirical 

study showed that users adjust their predictions when using historical data decision-aids 

in response to contextual information and that their prediction strategies differ based on 

the type of contextual information provided.  

• Chapter 8 synthesizes the results of the experimental studies to draw conclusions about 

how individuals use historical data to generate predictions of a future time value and 

discusses limitations of the current work. The relevance of these findings to time 

predictions in medical dispatch and the decision support tool presented in Chapter 4 is 

discussed.  

Conclusion: 

• Chapter 9 describes the key findings and limitations of the dissertation. Future work 

evaluating the findings of the dissertation with Ornge dispatchers and the influence of 

individual difference factors on time prediction behaviors and strategies is suggested.
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Chapter 2  

2 Transfer Time Prediction in Interfacility Patient 
Transfers at Ornge 

This chapter provides an introduction to interfacility medical transfers completed by Ornge, the 

medical transport service in the province of Ontario and motivates the problem of supporting 

time prediction in medical dispatch. An analysis of the accuracy of transport time predictions 

generated by dispatchers compared to predictions generated by an algorithm (built on historical 

data) is presented. The major contribution of this chapter is evidence that historical data can be 

used to produce transfer time predictions with less error than dispatchers. However, a joint 

human-automation decision system may further improve transport time predictions. Portions of 

this chapter were published in Giang et al. (2014) in IEEE Transactions on Human-Machine 

Systems. 

2.1 Interfacility Medical Transport in Ontario, Canada 

Interfacility medical transfers are one type of patient transport provided by medical transport 

systems, and refers to the transfer of patients between hospitals or other healthcare facilities 

(Ornge, 2017b). While often occurring with less uncertainty than other types of emergency 

medical responses (e.g., on-scene responses, where patients are taken from the scene to a 

healthcare facility), interfacility transfers are still time-critical processes that require tactical 

decision making due to the multiple transport options that are often available and the greater 

latitude in terms of the options for transporting the patient.  

Interfacility transfers are a key component of improving patient care and reducing morbidity and 

mortality rates in the regionalized critical care model (Singh & MacDonald, 2009). In such a 

model, healthcare resources and expertise are concentrated in a small number of centers of 

excellence whose critical care and other specialized units receive patient transfers from a larger 

number of referral hospitals. There are many benefits to this model of healthcare, including 

improved patient care and reduced costs. However, one of the major hurdles is the transfer of 

patients between different facilities (Singh & MacDonald, 2009). Patients who are critically ill 

may face potential risks during the transfer, and care is delayed until the patient arrives at the 

receiving facility. There is evidence that the benefits of having a regionalized care model 
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outweigh the risks (Singh & MacDonald, 2009); having an efficient medical transfer system is 

one way of mitigating the risks associated with interfacility patient transportation.  

In Ontario, Canada, interfacility patient transfers are largely handled by a single province-wide 

transportation medicine service, Ornge. As the sole provider for air and land critical care 

transport medicine services in Ontario, Ornge performed approximately 81,000 interfacility 

patient transfers and 7,000 on-scene responses in the five-year interval between 2007 and 2011. 

The majority of the interfacility transfers were emergent (an immediate threat to life: 42%) or 

urgent (stable but risk for deterioration or threat to life or limb: 21%). Ontario is a large province 

covering an area of roughly 1.1 million km2 (424, 000 square miles) which is more than double 

the size of France, with the majority of its population of 13.6 million concentrated in the south, 

along the border with the United States. Due to the size of the area serviced and the distribution 

of the population, Ornge relies on a variety of vehicles including fixed-wing aircraft, helicopter, 

and land ambulances to complete interfacility transfers.   

As of 2017 (Ornge, 2017a), Ornge has 12 bases located throughout the province (Figure 1) and a 

fleet of 11 helicopters (Augusta Westland AW-139s) and 8 fixed wing aircraft (Pilatus PC-12s), 

and a smaller fleet of approximately 13 critical-care land ambulances (Crestline Commander). 

Ornge also has a team of critical-care and advanced-care paramedics that allow it to service 

transfers and scene-calls that would normally not be possible with other paramedic crews. In 

addition to its own aircraft and personnel, Ornge also coordinates with a number of third party 

air medical carriers and local EMS that provide additional transfers when the patient does not 

require a critical-care team, or when Ornge is able to provide their critical- or advanced-care 

paramedics to support the transfer.  

There are very few air ambulance services that service as diverse and large an area as Ornge, and 

with the level of expertise of Ornge’s paramedics and dispatch staff. Some comparable large-

scale medical dispatch systems include the BC Ambulance Service in British Columba, Canada, 

and Air Methods in the United States. Most other ambulance services are responsible for only a 

few major hospitals and with pre-determined ambulance resources available to complete 

transfers between these facilities. In contrast, the proper management of resources and triaging of 

patient transfers requests across hundreds of hospitals is one of the unique challenges facing 

dispatchers of large medical transport systems such as Ornge. As healthcare systems are 
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consolidated and become larger, and as regionalized-care systems become more widespread, the 

need for dispatchers to deal with difficult transport mode decisions will also increase. 

 

Figure 1: Ornge Bases in Ontario, Canada 

2.1.1 Dispatch Decisions and the Operations and Control Center 

Within Ornge, dispatchers within the Operations and Control Center (OCC) are responsible for a 

number of decisions that impact the efficiency of transfers, including receiving and analyzing 

transfer requests, assigning proper medical personnel and equipment to these requests, and 

ensuring that resources are available when required. One such planning decision, that will be 

explored in more detail in this chapter, is the selection of the mode of transportation based on 

patient and transport factors. When a patient transfer is requested, there are occasionally multiple 

transport options available for transporting patients between the sending and receiving hospitals. 

These options include fixed-winged aircraft, helicopters, land ambulances, or a combination of 
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them. The choice of vehicle and crew introduces a source of uncertainty in patient transfer times, 

but also provides experienced dispatchers with a method for improving patient care.  

The dispatch team within the OCC is composed of different roles and responsibilities working in 

concert to complete medical transfers. Medical call takers receive transfer requests from 

hospitals, local EMS, and regional Central Ambulance Communications Centers (CACCs), and 

collect information about the patients. Transport planners plan and organize the logistics of 

moving the patient, which involve choosing methods for transportation (fixed wing, helicopter, 

and land ambulances) and coordinating between the various entities involved in the transfer (e.g., 

arranging for ground transportation for a patient arriving in a fixed-wing aircraft at an airport, 

and securing a helipad or other landing sites). The Transport Medicine Physician (TMP) reviews 

incoming transfers in terms of the level of care required and is responsible for medical triage 

decisions when multiple patients require transportation at the same time. Finally, the Operations 

Manager (OM) oversees the operation of the entire communications center and ensures that 

resources are being managed effectively at a strategic level. Figure 2 shows an overview of the 

dispatch process for a typical interfacility medical transfer. 

 

Figure 2: Ornge’s dispatch process for an interfacility transfer (adapted from Fatahi, 2013) 
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This chapter focuses on the role of the transport planner who organizes the logistics of the 

transfer. Typically, transport planners are responsible for predicting transport times, as they are 

most intimately tied to the details of the transfer. The time predictions are then communicated to 

the other key decision makers (e.g., the OM and TMP) who use this information to help facilitate 

their dispatch decisions. Chapter 3 will provide further details about the goals and factors that the 

transport planners and other members of the dispatch team may consider during dispatch 

decisions. 

2.2 Decision Support for Emergency Medical Dispatch 

Transport mode decisions are often difficult because, at times, there are no clear advantages for 

choosing one vehicle over another. While air transportation is typically faster than ground 

transportation (Svenson, O’Connor, & Lindsay, 2006), a land ambulance may be able to more 

quickly respond and deliver a patient for short distance transfers due to the additional steps that 

air transfers may require (e.g., flight planning, pre-flight preparations, and additional land legs 

required for transferring between landing sites and hospitals). For emergent or urgent situations 

that have competing options for transportation, the air versus ground transport decision is a 

critical and time-sensitive choice. Thus, the choice of vehicle to use to service a call is often 

dependent on the predictions of how long the transfer will take. 

Supporting transport mode decisions has not received much attention from the research 

community. Smith, Smith, Pletcher, Swope, and Kunst (1993) developed simple deterministic 

decision rules for trauma scene responses based on averages obtained from historical data from a 

single hospital. However, these decision rules were based on assumptions about the speed of 

different vehicles and did not consider factors that may only influence transfers to certain 

hospitals or along certain routes. Svenson, O’Connor, and Lindsay (2006) examined 145 cases in 

a comparison between air and ground transport times in interfacility medical transfers, and found 

that helicopter transport was always faster than ground transport.  In contrast, Lerner, Billittier, 

Sikora, and Moscati (1999) generated a map for supporting transport mode decisions by showing 

zones where each type of vehicle was faster, and were able to identify regions where ground 

transportation resulted in lower out-of-hospital times than air. The map was generated by 

mapping and extrapolating historical transportation data on a Geographic Information System 

(GIS). However, the maps that were generated did not present information about the variability 
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of out-of-hospital times for each region. Also, each of these studies only examined transfers from 

outlying hospitals and on-scene responses to a single trauma center and the generalizability of 

these findings for a small medical transport system to other systems and regions is unclear. As 

complex medical transport systems become more widespread, it would be important to consider 

transfers that happen across multiple sites and hospitals. Overall, there is still very little research 

in this area, especially regarding how medical dispatchers can make use of historical data to 

refine their transport decisions in time-critical situations. 

2.3 Time Prediction in Medical Dispatch Decision Making 

Time to definitive care, the time from when a call is received by dispatch to when the patient is 

finally handed off at the end of the transfer, is one of the important decision variables considered 

by dispatchers when making patient transport decisions (Harrington, Connolly, Biffl, Majercik, 

& Cioffi, 2005). Other time intervals that are important in dispatch decision making include time 

to bedside and out of hospital time. Time to bedside refers to the amount of time it takes for a 

medical transport team to arrive at patient’s bedside and time out of hospital is the time interval 

between when a patient leaves the sending hospital and when the patient arrives at the receiving 

hospital. Thus, there are many important time predictions that dispatchers must generate when 

considering a transport option, and these predictions are often generated under high time pressure 

and uncertainty. 

Research has shown that high time pressure alters decision making processes (Maule, 1997), 

often generating poorer decisions, especially when the decision makers are required to acquire 

and integrate information from multiple sources, as is the case in predicting transfer times for 

patients who require immediate care. Dispatchers who must arrange interfacility transport for 

urgent or emergent patients often need to make these decisions within minutes of receiving the 

call. Time pressure may also change the affective state of decision makers, leading to changes in 

risk taking behavior (Maule, 1997). Even under no time pressure, decision makers often rely on 

heuristics and biases (Tversky & Kahneman, 1974), which may result in potentially 

inappropriate decisions; and the presence of time pressure can lead to an increased reliance on 

these strategies. For emergent and urgent interfacility transfers, transport time predictions and the 

subsequent transportation mode decisions are both made under high time pressure and can 

greatly influence patient safety outcomes. For example, discrepancies between predicted and 
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actual times can lead to inappropriate vehicle selections. Even when the choice of vehicle is not 

influenced, inaccurate predictions can lead to misallocation of resources and scheduling issues. 

For example, previous research with emergency medical responders has found that on-scene 

paramedics tend to underestimate time of arrivals (Propp & Rosenberg, 1991; Slack, Koenig, & 

Bouley, 1995), and that accurate predictions would lead to different medical oversight 

interventions (Slack et al., 1995). 

In addition to time pressure, dispatchers also deal with large amounts of uncertainty when 

making decisions. The interfacility transfer process has high temporal variability. For example, 

prior work has demonstrated that factors such as precipitation significantly influence patient 

transfer times (Giang, Donmez, Ahghari, & Macdonald, 2014). Furthermore, information about 

the patient, the vehicles, and the routes (e.g., weather or traffic) often comes from second-hand 

sources or is predicted based on the dispatcher’s experiences which introduces additional 

uncertainty to dispatcher predictions. Dispatchers may integrate this contextual information into 

their predictions, however, this integration may potentially increase workload. Overall, the time 

pressure and the uncertainty that the dispatchers face make the task of time prediction difficult.  

Estimation and prediction of time durations have been studied outside of the medical dispatch 

domain (e.g., Halkjelsvik & Jørgensen, 2012; Kanten, 2011; König, 2005; Roy & Christenfeld, 

2007; Thomas & Handley, 2008). One of the most studied phenomenon with respect to time 

estimation is the planning fallacy. Planning fallacy refers to the optimistic prediction of an 

outcome, most commonly time but also for other variables such as cost, even though historical 

data suggest otherwise (Buehler et al., 2010). There are a variety of explanations for why 

individuals may tend to underestimate time durations, including a focus on the specific case at 

hand (Kahneman & Tversky, 1982b), biased memories of how long the event has taken in the 

past (Roy, Christenfeld, & McKenzie, 2005), and motivation (Buehler, Griffin, & MacDonald, 

1997; Byram, 1997). However, studies have also found that overestimations of time durations 

also can occur, particularly when the overestimations can help reduce stress due to time pressure 

in a scheduling task (Burt & Kemp, 1994).  

2.4 Previous work with Ornge 

Previous work conducted with Ornge (Fatahi, 2013; Giang, Donmez, Fatahi, et al., 2014) found 

that dispatchers adopt varying strategies to predict patient transport times (i.e., time to definitive 
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care, time to bedside, and out of hospital time). For example, some planners use web mapping 

services to predict land vehicle travel times, whereas others may depend on their own knowledge 

of the region. In general, the planners break down the transfer process into components and 

predict a time for each component; however, there is variability in the number of components 

used by different planners.  

In operation, the process of completing an interfacility transfer differs based on whether the 

transport vehicle is an air (i.e., helicopter or fixed-wing aircraft) or a land ambulance. However, 

the major medical transport steps are similar between both modes of transportation. Through 

onsite observations at Ornge’s OCC and through ride-outs with paramedics during transfers, 

Fatahi et al. (2012) identified the following major medical transport steps for interfacility 

transfers: 1) vehicle departs base, 2) vehicle arrives at pick-up site (for land vehicles: sending 

hospital; for aircraft: can be an airport, a helipad at the sending hospital, or a helipad at a nearby 

location), 3) paramedics arrive at the patient site, 4) paramedics depart with the patient, 5) 

vehicle departs pick-up site, 6) vehicle arrives at the destination site (for land vehicles: receiving 

hospital; for aircraft: can be an airport, a helipad at the receiving hospital, or a helipad at a 

nearby location), 7) transfer of care (or delivery of the patient). For air vehicles, if the receiving 

and/or sending hospitals do not have a helipad (for helicopter) or the landing site is an airport 

(for helicopter or fixed wing), additional local land ambulance transfers are conducted to deliver 

paramedics to the patient site and/or to deliver the patient to the vehicle or to the receiving 

hospital. Figure 3 depicts the intervals which arise from these steps.  

 

Figure 3: Major steps and time intervals of interfacility transfers 
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Since patient transfer time is a key decision variable in dispatch decisions, it was important to 

understand whether dispatchers could accurately predict these times for different types of 

vehicles. An initial analysis conducted by Fatahi et al. (2012) comparing actual transfer times to 

planner predictions found that planners tended to underestimate transfer times for both air and 

land transfers, but the underestimation was more prevalent for air transfers. In order to improve 

dispatcher predictions, a decision support algorithm was created to generate time predictions 

based on historical transfer time data (Fatahi, 2013; Giang, Donmez, Ahghari, et al., 2014). The 

algorithm breaks interfacility transfers into a number of intervals based on the major steps of the 

transfer process (Figure 3), and these intervals are used as the basic unit for predicting future 

transfers. Within each of the intervals, the subset of the historical data that share similar transfer 

characteristics for the interval (e.g., transfers between two hospitals that used the same vehicle) 

is selected. A point-estimate representing the average of similar past transfers is extracted using 

the median of this subset when there is enough historical data. When there is little or no 

historical data available, point-estimates are generated using other estimation methods including: 

1) regression models for travel intervals (e.g., the flight or drive between the pick-up and drop-

off sites), 2) real-time driving estimates from mapping software, and 3) a set of historical data of 

transfers that share some but not all of the same transfer characteristics as the patient transfer in 

question. The time to definitive care is calculated as the sum of all of the transfer intervals 

between when the call is received by Ornge and when care is transferred at the receiving 

hospital. A more thorough explanation of the algorithm can be found in Fatahi (2013) and Giang 

et al. (2014).  Because the algorithm relies primarily on historical data, it is expected to account 

for nuances of specific transfer routes that the planners may be less familiar with (e.g., distance 

between helipad and hospital, differences between different facilities for in-hospital time). In the 

following section, dispatcher predictions of the time to definitive care are compared to those 

produced by this decision support algorithm. 

2.5 Comparison of Dispatcher Predictions of Time to Definitive 
Care to Algorithm Predictions 

As part of this dissertation, an analysis was conducted to compare how well dispatchers and the 

algorithm can predict time to definitive care to support decisions made within the dispatch 

interval indicated in Figure 3. The analysis used a stratified random sample of 171 interfacility 

transfers that occurred between 2010 and 2011. This dataset contained 77 (45%) transfers that 
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included helicopter transportation, and 94 transfers (55%) that were completed entirely by land 

ambulances. The distances covered by the transfers ranged from 20 km to 806 km, with an 

average transfer distance of 130 km (SD = 84 km). Dispatcher predictions generated by the 

Ornge transport planners during the transfer process were recorded, along with actual transfer 

times during the transfer. In addition, the algorithm’s time predictions were generated for each 

transfer. 

As was found with the earlier analysis (Fatahi et al., 2012), dispatchers tended to underestimate 

the actual time to definitive care, and this tendency to underestimate was larger for air transfers 

than land transfers. Figure 4 (left) presents a scatterplot of dispatcher predictions versus actual 

transfer times. The 45 degree dotted line represents perfect predictions; data points below this 

line are underestimates and points above are overestimates. Overall, the magnitude of dispatch 

prediction errors (i.e., |predicted – actual|) was relatively large (mean, M = 53.56 min; standard 

error, SE = 3.58). Of the 171 cases, 74.3% were underestimates and 24.6% were overestimates 

(Figure 5, top). The percentage of over and underestimations differed significantly based on the 

mode of transportation with air transfers having a higher proportion of underestimations, χ2(1) = 

4.93, p =.03. Furthermore, dispatcher prediction errors (i.e., predicted – actual) differed between 

air (M = -48.14 min, SE = 7.19) and land transfers (M = -26.70, SE = 6.00), t(169) = -2.31, 

p=.02. However, the variability of the air prediction errors (SD = 63.09) and land prediction 

errors (SD = 58.13) did not differ, F(76, 93) = 1.78, p =.45, ns.   

The results of this analysis suggest that dispatchers were unable to accurately predict transfer 

times. More interestingly, there appeared to have a bias with underestimating air transfers to a 

higher degree compared to land transfers. This bias suggests that there may be more factors 

associated with air transfers that may not be considered during the prediction process. Air 

transfers often are more complex and require a larger number of steps (e.g., transferring the 

patient between the helipad and the hospital) that might be overlooked by dispatchers. There is 

also a general belief that air transfers are faster than land transfers as suggested by Svenson et al. 

(2006) and also brought up by Ornge staff. Thus, there is the possibility of such a belief 

influencing how dispatchers predict air transfers.   
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Figure 4: Time to definitive care: actual times vs. (left) planner predictions, and (right) 

algorithm predictions. 

 

 

Figure 5: Histograms of prediction errors for air (left) and land (right) transfers for 

dispatcher (top) and algorithm (bottom) predictions. 



19 

 

Figure 4 (right) presents a scatterplot of the same stratified random sample of 171 interfacility 

transfers, and compares predictions generated by the algorithm with the actual transfer times. 

Again, the dotted line represents where a perfect prediction would fall. Similar to the dispatchers, 

the algorithm tended to underestimate transfer times, with 69.6% of the cases underestimated and 

28.7% overestimated. Furthermore, for 74.4% of the cases, both the algorithm and the 

dispatchers had the same type of error (i.e., over or underestimate). However, Figure 4 also 

suggests that the algorithm prediction errors were smaller than those of the dispatchers, as many 

of the data points are located closer to the 45 degree line. Overall, prediction errors (i.e., 

|predicted – actual|) were on the average 21 min smaller for the algorithm (M = 33.0, SE = 2.64) 

compared to the dispatchers (M = 53.6, SE = 3.58), t(170)= -7.62, p < .001. This difference is 

practically significant as 20 minutes is crucial in urgent patient care and could result in an 

incorrect dispatch decision. 

Unlike the dispatchers, the algorithm did not have a strong bias for underestimating air transfers 

(Figure 5). The proportion of over and underestimations did not differ between air and land 

transfers, χ2(1)  = 1.86, p = .17, ns.  In addition, the average prediction error (i.e., predicted – 

actual) for air transfers (M = -20.88, SE = 4.23) did not significantly differ from land transfers 

(M = -29.50, SE = 4.39), t(169) = 1.40, p = .16, ns. These results suggest that there is an 

opportunity to improve dispatcher predictions of the time to definitive care through the use of 

this and similar algorithms in combination with a human decision maker.  

2.6 Improving Time Prediction by Supporting Human-Algorithm 
Collaboration 

As a group, Ornge dispatchers have planned and carried out thousands of interfacility transfers 

and have developed experience and expertise in dealing with the difficult task of assigning 

resources to different transfers. However, with regards to transport time prediction, the algorithm 

analyzed in this chapter was able to outperform the dispatchers. This result agrees with the 

findings that statistical models tend to outperform expert decision makers (Dawes & Corrigan, 

1974; Meehl, 1954). Even with the relatively simple methods used, the prediction errors 

observed with the algorithm were on average 21 minutes less compared to the dispatchers.  

While it is tempting to remove dispatchers from the medical dispatch process, purely automated 

systems would not be appropriate as medical judgments often carry a degree of responsibility, 
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and there may be social and legal issues with relying purely on statistical models for determining 

patient-related choices. Furthermore, the underlying models can fail to capture the constantly 

changing values and goals that exist in medical decision making; the improving or deteriorating 

medical condition of the patient may force the dispatchers to choose different transportation 

options. Brittleness, which refers to a lack of flexibility (e.g., a rigid set of variables considered 

by the algorithm from this chapter) when encountering unusual situations, is one weakness of 

automated systems, and is where a human decision maker can improve the overall decision 

making capabilities of the system (Cummings, How, Whitten, & Toupet, 2012). Finally, the 

results of the analysis reported in this chapter show that the algorithm predictions were still not 

completely accurate. Even with the creation of more accurate time prediction algorithms, there 

will always be some degree of error due to the uncertainty and inherent variability that exist in 

the world (e.g., traffic, weather). In fact, in all practical applications of decision making, there 

will always be some irreducible uncertainty that cannot be mitigated at the time of judgment 

(Hammond, 1996). Ornge dispatchers, while making less accurate predictions, are very adept at 

coping with uncertainty, and often take steps in mitigating or minimizing its effects on the 

overall transfer decision. For example, Ornge’s transport medicine physicians come from 

emergency medicine backgrounds where acting with limited information and high uncertainty is 

part of the daily routine. Thus, the dispatchers can deal with situations which may not be 

captured by the point-estimates presented by a decision support algorithm.  

Based on the literature presented in the introduction, this dissertation adopts the approach of 

combining human expertise with decision aids. For example, if information about the magnitude 

of the uncertainty associated with the algorithm prediction is available, it is possible that an 

expert dispatcher may be able to use this information (e.g., by changing the way they predict the 

transport time). One method of quantifying uncertainty in the transfer process is to examine the 

dispersion of historical transfer times that were used to create the algorithm prediction. Transfer 

intervals with low variability provide algorithm predictions that are fairly representative of that 

interval, while those with high variability deal with intervals that encompass a larger variety of 

situations. However, how dispatchers will use this uncertainty information is not well 

understood. In addition, some dispatchers may already be unconsciously accounting for 

uncertainty, for example by adopting more conservative decision criteria. To understand how 

dispatchers’ predictions may be improved by the inclusion of evidence-based time prediction 
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support, a more complete understanding is required regarding the medical dispatch process, in 

particular, how dispatchers think about uncertainty and variability when generating transport 

time predictions. These are the topics covered in the two field studies reported in Chapter 3. 
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Chapter 3  

3 Interfacility Medical Dispatch Decisions  

This chapter presents two field studies with medical dispatchers at Ornge that examine the 

medical dispatch decision process; in particular, how dispatchers think about uncertainty and 

variability when generating transport time predictions. While the original field studies were 

broader in scope, this chapter deals specifically with the two following goals: 1) understand if 

and how dispatchers use uncertainty information in transfer time prediction and 2) understand 

the major decision goals for Ornge’s dispatchers in order to gain insight into which factors may 

impact transport time predictions.  The major contribution of this chapter is evidence that 

uncertainty about transport times is not explicitly considered by dispatchers, even though 

transport time prediction is a key component of dispatch decision making. Furthermore, two 

categories of contextual factors considered by medical dispatchers that may influence transport 

time predictions are identified. Portions of this chapter were published in Giang et al. (2015), in 

Proceedings of the International Symposium on Human Factors and Ergonomics in Health Care, 

and Giang et al. (2016), in Proceedings of the 60th Annual Meeting of the Human Factors and 

Ergonomics Society. 

3.1 The Role of Uncertainty in Dispatcher Time Predictions 

As mentioned at the end of Chapter 2, this dissertation proposes the adoption of a joint human-

automation decision system for the medical dispatch domain. As also presented earlier, the tools 

that have been developed so far present point estimates for their transfer predictions. The 

inclusion of uncertainty information associated with these point estimates can facilitate this joint 

human-automation decision system, as expert decision makers can leverage their prior 

knowledge and also bring in information about the current situation that may not be encoded 

within the automation. One way of quantifying uncertainty is through the transfer time variability 

recorded in historical data. To this end, the first field study explored whether and how 

dispatchers think about uncertainty while making transfer time predictions; and whether 

dispatchers thought that information about the variability in historical transfers would be useful 

in their decision making. This study was conducted over a period of three months from April to 

July in 2014.  
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3.1.1 Participants 

Onsite observations were conducted with 4 Ornge transport planners. Two of the planners had 

less than one year of experience working as a transport planner, while the remaining two had 

more than 4 years of experience as transport planners and had also previously worked in other 

dispatch positions. One of the participants had a background in medicine; the other three 

participants had aviation backgrounds. The study was approved by the University of Toronto 

Office of Research Ethics. The relevant ethics documents for the two field studies are included in 

Appendix A. 

3.1.2 Method and Procedure 

A contextual inquiry approach (Beyer & Holtzblatt, 1998) was used for the observations and 

interviews with the planners. Observations were conducted during working shifts inside Ornge’s 

OCC (Figure 6). Each observation occurred over a two-day period, and each day lasted an 

average of 5 hours. Overall, the data collection took approximately 40 hours. The days of the 

observations were selected to avoid operationally busy days (e.g., weekends and holidays) and 

observations were made during off-peak hours (between 10am-4pm) to minimize potential 

disruptions to the safety critical tasks performed by the dispatchers. Two observers were present 

during each observation.    

 

Figure 6: The Ornge Operations and Control Center (OCC) in 2014 

The observations and interview questions mostly focused on urgent and emergent interfacility 

transfers. However, other dispatch calls, such as on-scene responses were also discussed with the 

planners. Throughout the observational period, the observers took notes on interactions with the 
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computer-assisted dispatch (CAD) system and other tools used by the transport planners. After 

the completion of each transfer request, planners were interviewed about any elements of 

uncertainty that existed as part of their dispatch decision making. In particular, this study focused 

on the uncertainty of their predictions of the time to definitive care, which was defined to the 

planners as the spread of possible times that could occur due to unforeseen events or natural 

variation in the process. Planners were also queried about factors and contextual information that 

they incorporate into their decision making process which result in adjustments in their predicted 

times. As part of the observation process, transport planners were also introduced to the decision 

support algorithm described in Chapter 2, which provided point-estimates of the time to 

definitive care for the transfer requests they received. The following results were generated from 

a review of the notes from the observations and discussions between the interviewers. 

3.1.3 Results and Discussion 

Time prediction within the dispatch processes 

High time pressure during dispatch decision making was observed during the contextual inquiry 

process. For example, medical triage decisions made by TMPs required the transport planner to 

produce, within minutes, multiple predictions of the transport time (i.e., for different transport 

options). However, one important finding from the contextual inquiry was that the prediction of 

transport times for different transport modes was only a small portion of the planner’s dispatch 

process, which included contacting multiple parties (e.g., pilots, paramedics, sending and 

receiving facilities, and local EMS services) and logging data into the CAD system. These other 

planning and coordination activities were the main focus of the planners’ work rather than the air 

versus ground transport mode decisions that were the focus of Chapter 2. Thus, the participants 

were unable to devote much time to predicting transfer times, even though it has been identified 

as a major area of improvement for preventing negative patient outcomes (Office of the Chief 

Coroner for Ontario, 2013). In the absence of the decision-aid, the dispatchers relied on a large 

variety of methods for generating predictions quickly. These included using their own experience 

and judgement, mapping software, and tables of travel times between specific locations. 

Time pressure was still a major factor when the transport planners were provided with point-

estimates generated by the algorithm; the participants had little time to reflect on these 

recommendations. Instead, they would often make use of the point-estimate immediately if they 
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considered it to be reasonable, choose a transfer option (e.g., air vs. land) and would begin with 

the planning of the logistics of the transfer (i.e., asking the pilots to do a weather check). If they 

felt later that point-estimate could be more accurate (although it was reasonable), they would 

refine the predictions they entered into the CAD system. The use of a rough estimate to make the 

initial transport option decision was observed in general even without the algorithm predictions 

presented to the planners. One of the dispatchers stated that during busy periods, their main goal 

was to get resources out the door, and that estimated-time-of-arrivals could be updated en route if 

more accurate information became available.  

Current and future use of uncertainty information 

When asked about historical variability as a measure of uncertainty, participants stated that they 

would not intuitively think about uncertainty in this way. In fact, the planners did not appear to 

explicitly consider the uncertainty of predicted transport times. Instead, they tended to use best 

case scenarios or average times instead of considering a range of possible times or trying to 

anticipate rare events (e.g., mechanical problems with the vehicles). The planners stated that they 

favored generating predictions quickly, so that dispatch decisions could be expedited and they 

could focus on the more time-consuming tasks of organizing the logistics of the transfer. 

Historical transport time data, and the dispersion of these transfers, had not been available to 

planners in the past, and thus the interviewed planners were at a loss for how this information 

should be used to help with time predictions.  

While uncertainty, as represented as the spread of possible transfer times, was not considered by 

the planners, the more experienced planners were interested in seeing information about the 

reliability of the predictions provided by a decision support algorithm as they were able to 

contrast their own experiences with the algorithm’s output. Therefore, reframing the variability 

of historical data as a measure of reliability, rather than uncertainty, may be beneficial as the 

variability can provide an indication of how consistent the transfer process is for a given set of 

vehicles, crew, and hospitals. In contrast, the less experienced dispatchers, were found to be 

more trusting of the algorithm’s predictions, since even when they felt the point-estimates 

provided by the algorithm may be incorrect, they were not as confident in their own predictions 

as the experienced planners. Therefore, reliability information can help build trust with 
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experienced users, and can help less experienced users be more critical of a decision-aid’s 

predictions.  

The planners found the decision support algorithm useful for reminding them about the nuances 

of a particular transfer. For example, when the algorithm produced a longer than expected 

prediction for the helicopter to hospital portion of a transfer, one of the interviewed planners was 

reminded that the helipad was not a "walk-in", where they could place the patient on a stretcher 

and wheel them into the hospital. Instead a land ambulance must be booked to bring the patient 

from the helipad into the hospital, which takes longer than a simple "walk-in". This prompted the 

planner to take the required action of arranging for ground transportation. The presentation of 

historical dispersion information may also act as a similar prompt for the planners, as seeing 

larger variability in the historical data can remind planners that a particular transfer is more 

susceptible to disruptions, and this may result in adjustments in the dispatchers’ prediction 

strategy. 

Overall, the major findings of the first study were 1) the air vs. ground transport mode decisions 

are only a small portion of the overall dispatch task, leading planners to spend very little time 

generating predictions, thus 2) planners do not explicitly use uncertainty information as part of 

their time prediction process and mostly rely on best case or average times, but 3) planners do 

adjust their predictions to account for situational factors when they have time. While the 

transport planner’s focus on organizing the logistics of a transfer may have limited the perceived 

benefit of uncertainty information, the study did identify potential benefits of presenting 

uncertainty information: assist with assessing the reliability of point-estimates provided by the 

decision-aid, and as prompt for planners to consider why a transfer may have large variability 

(i.e., more uncertainty).  

3.2 Factors that Influence Dispatch Time Predictions 

Since transport planners did not spend much time on predicting transport times, the second field 

study broadened the investigation to examine what decision goals the planners as well as other 

dispatchers, OMs and TMPs, focus on during their dispatch decisions. OMs and TMPs were 

included as they use planners’ time predictions in higher-level dispatch decision making (i.e., 

resource allocation and patient triage), and uncertainty information related to these predictions 

may be more relevant for these roles. Further, as the first field study showed that planners appear 
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to adjust their predictions based on the current situation (e.g., accounting for traffic and weather, 

their experiences with a particular hospital), the second field study also investigated the 

contextual factors that may influence time predictions.  

3.2.1 Participants 

Interviews were conducted with ten experienced Ornge dispatchers. Six were planners, 2 were 

TMPs, and 2 were OMs. All participants had been personally involved in managing interfacility 

and on-scene patient transfers in which they made critical decisions. Prior to their work at Ornge, 

the participants had a variety of backgrounds in operations, logistics, and dispatching in aviation, 

trucking, and the military. The study was carried out in two parts. Transport planners were 

interviewed during a period between September and December of 2015. The TMPs and OMs 

were interviewed between May and August of 2016. The study was approved by the University 

of Toronto Office of Research Ethics. 

3.2.2 Method and Procedure 

A methodology that has been previously used to study emergency medical dispatch (Wong et al., 

1997) was adopted for the study which made use of Critical Decision Method (CDM) interviews. 

CDM is a retrospective knowledge elicitation method that is commonly used in naturalistic 

decision making contexts to understand how experts think during particularly difficult incidents 

using interviews where the experts reflect on a single previous incident (Klein, Calderwood, & 

MacGregor, 1989).  

Interviews were conducted during working shifts inside the OCC. Participants responded to 

interview questions during downtimes between calls, and low-volume day shifts were selected to 

minimize the impact to the participants’ main task of dispatching. During each interview, 

participants were asked to recall and ‘walk-through’ a single challenging decision making 

incident that involved an interfacility transfer or on-scene response in which they played a major 

decision making role. Alternatively, some interviews were conducted on an incident that 

occurred during the period of observation rather than a retrospective case. For the OMs, who 

oversee the operational decisions in the OCC, the critical incidents discussed involved multiple 

patient transfers or activities that involved preparing for transfers (i.e., shift changes and resource 

allocation). 
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From these incidents, a timeline of the incident was constructed jointly with the participants, and 

decision points were identified first by the interviewer and then verified by the interviewees. The 

decision points were elaborated on using a set of cognitive probes. The probes addressed the 

cues, tacit knowledge, experience, goals, and processes used during each decision point. After 

the interviews, the logs generated from the CAD system, which contained additional information 

about the incident (e.g., time stamps of major steps in the transfers), and the notes that were 

taken by the transport planner during the transfer were obtained.  

For the six interviews with transport planners, a trained undergraduate research assistant 

conducted the interviews during working shifts inside the OCC. For the first three interviews, I 

was also present. Due to organizational constraints and research ethics, the interviews with the 

transport planners were not recorded. For the four interviews with TMPs and OMs, two trained 

undergraduate assistants and I were present. The interviews during this second phase of 

observations were audio recorded, due to amendments to the original ethics protocol. The audio 

recordings were transcribed by an undergraduate research assistant for analysis. 

A structured approach (Wong, 2003) was used to produce an initial analysis of the CDM data. 

The steps of the structured approach consists of 1) creating a decisions chart (outlines the major 

decision points in the incident); 2) creating an incident summary (a written description of the 

incident that shows relationships between events that may not be clear in the decisions chart); 3) 

making a decisions analysis table; 4) identifying items of interest in each incident; 5) and 

comparing goals-states across multiple participants. In addition, short case studies were created 

from the interviews completed with the TMPs and OMs to describe major sources of uncertainty 

(Appendix B). The following results were generated from synthesis and discussions within the 

research team using the artifacts generated from the observation process (e.g., the structured 

analysis tables and the case studies). 

3.2.3 Results and Discussion 

Transport Planners 

Transport planners appeared to have three major decision goals: maintaining situation awareness, 

matching the correct resource to the transfer, and planning the logistics of the transfer. Many of 
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these goal states correspond to similar goal states that have been found previously in emergency 

medical dispatch (Wong, O’Hare, & Sallis, 1996): 

1) Maintain Situation Awareness (SA) – Global and Single Transfer: Transport planners 

needed to have an awareness of where their resources were for two reasons: so that they 

could monitor ongoing transfers, which could take up to multiple hours to complete for 

long transfers, and to know what resources were available to use for future transfers. 

Thus, planners strived to maintain situation awareness of both the province-wide 

operational picture (global SA) and the specific details of a given transfer (single transfer 

SA). The planners have access to a number of tools (e.g., the CAD system, ACETech 

(used for tracking land ambulances; Ferno, 2018), Latitude (used for tracking air craft; 

Latitude Technologies, 2018)) that help them maintain both types of SA, and take time to 

update their awareness of their resources throughout the entire dispatch process

2) Match Resource to Transfer: One of the major goals that the planners had to achieve 

when completing a transfer was finding the correct resource (e.g., the air vs. ground 

transport decision). Matching resources to transfers often required the creation of 

multistage ‘transport solutions’. Transport solutions represented multistage plans for 

transporting a patient, often involving different vehicles, paramedic crews, and third-

party resources (e.g., local EMS, third party air medical transport services). These 

solutions were created to satisfy three main outcome objectives: provide the correct level 

of care, provide the fastest care possible, and provide the most cost and time efficient 

resource for maintaining Ornge’s operational flexibility. Overall, the planners attempted 

to balance each of the three outcome objectives as they created transport solutions. The 

relative priorities of the objectives differed based on the characteristics of the transfer 

(e.g., the patient’s condition, the logistics of getting to the sending and receiving 

facilities, and weather) as well as the planners’ SA of Ornge’s resources at the time of the 

call. The planners would constrain certain parts of the transport while compromising on 

the other objectives. For example, patients who required the highest level of care would 

have a transport solution created that was constrained around getting a critical-care 

paramedic team onboard the vehicle, while less urgent patients would have transport 

solutions that could be optimized around minimizing costs and maximizing transport 

efficiency.  
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3) Plan Logistics of Transfer: Transport planners were also responsible for arranging the 

logistics of a transfer (e.g., calling ahead to make sure landing sites are secured and 

cleared, and arranging local ground transportation before an aircraft landed). By 

matching the needs of the transfer with the resources that could complete it, many of the 

logistical requirements are specified. However, planners must then take steps to ensure 

that the transfers can be carried out as planned, and must continue to monitor and adjust 

the transfer even after the resources had been dispatched. One such task was providing 

estimated times of arrival to the various parties involved in the transfer. The planner 

would use these estimated times to book the landing sites and local ground transport, 

inform the sending and receiving facilities about when to expect Ornge’s paramedics, and 

to coordinate between the different vehicles used in the transfer. 

Operations Managers and Transport Medicine Physicians 

The OM and TMP roles dealt with different but related goals in comparison to the planners. One 

of the major difficulties for the planners was the balancing of the three objectives (level of care, 

fastest care, most efficient resource) as they built transport solutions. The OMs and TMPs had 

goals that dealt directly with these objectives and their jobs were to help the planners resolve 

conflicts between the three objectives. The goal states that were identified for OMs and TMPs 

were: maintain coverage, use most effective resource, and collaborate with expertise: 

1) Maintain Coverage: Many of the decisions made by the OM were related to ensuring 

correct staffing levels and resource allocations both throughout the entire province (i.e., 

calling in extra resources when paramedics or aircraft were not available or had reached 

the end of their duty time outside of their home base), and within the OCC itself. While 

some of the decisions observed dealt explicitly with this resource allocation issue (see 

Case 3 in Appendix B), it was also a decision goal that was always considered by the 

OMs when they provided oversight for the decisions made by the transport planners 

within their teams.  

2) Collaborate with Expertise: The OMs and TMPs were the OCC dispatcher roles that 

dealt with uncertainty most often. A lack of information about the current situation was a 

common cause of uncertainty (i.e., waiting for more information to come in from a 911 

call; see Case 2 in Appendix B). However, both the OMs and TMPs also recognized 
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when they did not have the knowledge base to make an informed decision, at which time 

they made decisions to seek out a decision maker with the correct knowledge. This 

decision goal is explicitly built into the organization structure of the OCC with medical 

decisions being the responsibility of the TMP and operational decisions being the 

responsibility of the OM, a distribution of responsibilities that is common in air medical 

transport systems (Martin, 2006). The transfer decisions had both medical and 

operational characteristics and required collaboration between the TMP and OM. 

However, for this collaboration to happen, either the TMP or the OM must first recognize 

their own lack of knowledge and then explicitly reach out and work with the other 

member of the dispatch team. This also occurred when a TMP felt that the medical 

situation was outside of their area of expertise (see Case 1 in Appendix B where the TMP 

contacts a pediatric TMP due to the transfer of a patient going into labor).  

3) Use Most Effective Resource: Both the OMs and TMPs were tasked for ensuring that the 

most effective resource was being used for each transfer, and these corresponded to the 

three outcome objectives mentioned previously for transport planners: appropriate level 

of care, fastest care possible, and most cost and time efficient transfer. For the TMP, 

ensuring the most effective resource manifested in the form of level of care decisions. 

Each transfer request was assigned a required level of care (primary care, advanced care, 

or critical care) that dictated which paramedic crews could be assigned to the patient. 

Ornge uses an algorithm to automatically assign a level of care for each new transfer, but 

these assignments could be overruled by the TMP. These re-assessments occasionally 

occurred when transport planners or OMs were considering alternative transport options 

that required more flexibility in terms of the paramedic crews. The TMPs would then 

need to balance the level of care they believe is required versus the constraints of current 

operational situation (i.e., what vehicles are available if the patient needed to be moved at 

that moment), which often depended on time to definitive care predictions provided by 

the planners for different transport modes. The OMs would also make similar decisions, 

but their focus was on the operational constraints (future coverage and cost).  

Overall, it appears that: 1) many of the decisions made by Ornge are done as a collaboration 

between multiple decision makers who focus on different objectives that may conflict (i.e., 

medical considerations for the TMP vs. operational considerations for the OM), and 2) predicted 
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transport times are a key decision variable in supporting many of the decision goals found for 

transport planners, OMs, and TMPs, and these predictions serve as an artifact for communicating 

information between the different dispatchers.  

Ornge’s transport planners appeared to have decision goals that focused on building transport 

solutions and planning the logistics of completing a transfer. The planners were able to quickly 

generate potential transport mode solutions (i.e., the multistage transport plans) to satisfy the 

requirements of the transfer. After developing such a plan, they would determine the feasibility 

of different plans by contacting the paramedics, vehicles, and hospitals involved. However, when 

multiple options appeared to be equally desirable or undesirable, sometimes due to the 

competing decision objectives (i.e., appropriate level of care, fastest care possible, and most cost 

and time efficient transfer), decisions about different elements of the transfer were delegated 

across the dispatch team (i.e., TMP and OM within the context of Ornge), as has been found in 

other studies of EMD (Furniss & Blandford, 2006). The planners would consult with the OM and 

TMP whose goal states dealt with resolving these conflicts. In contrast to the planners who 

focused on quickly recognizing a possible solution and then dealing with the logistics of the 

transfer, the OMs tended to consider multiple options, and would often ask their planners to 

produce alternative transport mode solutions (i.e., using a third party standing agreement carrier; 

see Case 4 in Appendix B).  

The interviews also showed the importance of time predictions in Ornge’s dispatch decision 

making. Predicted times were used in coordination activities performed by the planners in the 

form of Estimated Time of Arrivals (ETAs) that would be provided to Ornge’s external 

stakeholders, as well as for planning of where and when vehicles should meet in multistage 

transfers. Time to definitive care predictions were given to the other decision makers involved in 

the transfer process (e.g., the TMP) to assist in their medical triage and level of care decisions. In 

choosing a transport option, the planners mainly relied on cues such as the distance of the 

transfer, their knowledge of the vehicle speeds, and their own experience in determining the 

closest or fastest resource. Only in cases that they felt were close did they explicitly calculate the 

time to definitive care.  

In addition, the transport time predictions appeared to be one of the major artifacts for 

communicating information between different dispatchers in order to facilitate decision making. 
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This was especially true between the planners and the TMPs, who do not have the same level of 

operational understanding that planners have. When asked to make medical triage decisions, the 

TMPs would request and be provided with transport time predictions, and the planners (and 

OMs) would incorporate their knowledge of the current operational situation into their predicted 

times. Thus, the TMPs benefit from the contextual information about the situation that the 

transport planners use to adjust their predictions. These contextual factors will be discussed 

further in the following section. 

3.3 Contextual Information in Medical Dispatch 

One of the observations from the two field studies was that dispatchers considered many 

situation specific factors that influenced their understanding of how long it would take to 

transport a patient. Two types of contextual information were identified: likelihood information 

and consequence information. These factors were explored in the empirical study described in 

Chapter 7. 

3.3.1 Likelihood-Information 

Likelihood-information represent factors that should impact the transfer process, leading to 

changes in the expected transfer time. One example is with intubated patients, which often take 

longer to prep for transfer, leading to longer transfer times compared to non-intubated patients, if 

other factors are held the same. Intubation, and other patient related factors are just one type of 

likelihood-information that the dispatchers appeared to use to adjust their predictions, and these 

adjustments could be quite varied, as highlighted in the following quotes from the OMs:  

“OM1: (the paramedic crew) could be there (the sending hospital) for 20 

minutes or 3 hours, depending on what is wrong with the patient. 

Interviewer: I have seen planners who read through the patient logs and see if 

they are intubated and stuff. 

OM1: Yep, because we will look at things, if a patient has any equipment lines 

and drugs so this person has cardiac monitor, oxygen they are on a stretcher 

and they are vented so they are not breathing on their own then they’ve got an 

arterial line and Endotracheal intubation, IV,… so they have a lot of stuff 
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hooked up to them. In sending facility all that equipment is hooked up to the 

hospitals equipment and our medics have to go in and disconnect each one of 

those things and hook it up to the transport version of the hospital equipment, 

make sure that the patient is stable and then take them out to the helicopter. That 

can take a couple of hours on some patients.”  

“OM2: Sometimes medics get there and the patient is not even remotely close 

to what they said they were, thank god, and things happen significantly faster. 

Other times, patients crash and unfortunately things take a lot longer.” 

Other examples of likelihood-information that were observed in the field studies include 

weather (i.e., an aircraft detouring around a storm front), traffic, paramedic crew 

experience and speed, and the location of the receiving units within a hospital.  

3.3.2 Consequence-Information 

In contrast, consequence-information deals with the gains or penalties (i.e., the value) for having 

certain outcomes, rather than the changes in the process. Sometimes different transfer times will 

result in different consequences for patient outcomes, the cost of the transfer, or resource 

management. For example, Case 1 in Appendix B, describes the decisions made by a TMP about 

the management and transport of a patient who was going into labor in a remote location. The 

TMP was actively trying to match the timeline of the labor with the timeline of the arrival of 

Ornge’s paramedics (time to bedside) and when the patient could be transported to a receiving 

hospital (time to definitive care). As presented in the following quote, the TMP outlined possible 

consequences depending on where the patient delivered their baby; the consequence-information 

is highlighted in bold: 

“TMP1: So if the patient is getting kind of further along in their labour you go, 

‘… what’s the worst possible scenario, is the worst possible scenario: stay in the 

nursing station, deliver in the nursing station or is it in fact take a chance to go 

and now the patient deliver in the aircraft’. And I think that we would generally 

agree that delivery in the aircraft is the least beneficial. So you go, ‘ok’, you 

know the best would be to get to the receiving, the next best would be to stay in 

the nursing station, the worst would be to deliver in the aircraft... so do you 
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launch? and you go, ‘well how far along is she, what is her history of labour, 

what is our crew configuration, how long is the trip, what’s the weather’ You 

know essentially you are trying to estimate what is the likelihood she is going to 

deliver in the aircraft. And you want to try and avoid that. By either delivering 

before or after.” 

Other examples of consequence-information that were observed in the field studies 

include the flight crew’s duty time limits (which can result in aircraft being stranded 

away from their home base), and paramedic and flight crew overtime. Ideally, 

consequence-information should not change time predictions for a given transfer.  

3.4 Conclusion 

This chapter described two field studies with actual Ornge dispatchers to better understand the 

dispatch decision making process. First, this chapter examined if and how dispatchers use 

uncertainty information during their transport time predictions. The results of the contextual 

inquiry observations showed that planners spent very little time generating time to definitive care 

predictions, even though these predicted times were a key component in many of the decision 

goals uncovered in the CDM interviews, suggesting that interventions (i.e., a decision-aid and/or 

simplifying the dispatch process) may help improve dispatch decisions. Furthermore, uncertainty 

was not explicitly considered by the planners, as they tended to rely on average or best-case 

scenarios rather than considering variability of historical transfer times. However, it appeared 

that the usage of a decision support tool by the planners may be improved through the 

presentation of uncertainty information: it can assist with assessing the reliability of point-

estimates provided by the decision-aid, and as prompt for planners to consider why a transfer 

may have large variability (i.e., more uncertainty). 

Secondly, the field studies provided insight on two categories of contextual factors that may be 

impacting the time predictions generated by Ornge dispatchers. Likelihood-information 

represents factors that should actually impact the transfer process, such as patient condition, 

weather, and the crew, and hence the transfer time. Consequence-information, on the other hand, 

represents factors that influence the consequences of a transfer, such as flight crew duty time 

limits and crew overtime but should not affect the predicted transfer time for a given option. 

Finally, the field studies also provided further evidence that dispatch decision making is a highly 
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cooperative activity where transport time predictions act as one artifact for transmitting 

knowledge between dispatchers. These results provide a foundation for designing the workflow 

and interface of a decision support tool based on the algorithm described in Chapter 2, to help 

support transport time predictions. This design will be discussed in Chapter 4. 

One limitation of the field studies presented in this chapter is that these studies were conducted at 

a single large-scale medical transportation system located in Ontario, Canada. As mentioned 

previously, there are few medical transport systems that service a geographical area and system 

of hospitals as large as Ornge does in Ontario, thus the generalizability of the findings to other 

medical transportation systems requires further investigation. For example, local EMS may not 

have access to the same paramedic resources and transportation options that are available to 

Ornge’s dispatchers; thus, local EMS dispatchers may deal with other challenges to their 

dispatch decision making than those found for Ornge. However, large-scale medical 

transportation systems may become more prevalent as regionalized critical care models are 

adopted (Institute of Medicine, 2007) and hospital systems become consolidated (Cuellar & 

Gertler, 2003); the findings of this chapter can help understand the challenges faced by 

dispatchers within these systems. Furthermore, decision-aids are only one method for supporting 

the prediction of transfer times. For example, the introduction of new CAD systems to assist with 

the time consuming aspects of the transport planner tasks, such as entering and updating 

information within the CAD system, may allow dispatchers to spend more time on producing 

transfer time predictions and may also help improve dispatch decision making. 

A second limitation of the field studies was the methods used in analyzing and interpreting the 

observation and artifacts generated (e.g., notes, transcripts, incident timelines, etc.) to generate 

the results. The analysis of the data largely consisted of synthesis and discussions within the 

research team, and thus may be influenced by the researchers’ prior understanding of the domain 

and biases towards problems that were pertinent to transfer time prediction and uncertainty. 

While these topics helped focus and scope the field studies, the use of more rigorous 

methodologies such as thematic analysis (Braun & Clarke, 2006), grounded theory (Strauss & 

Corbin, 1994), and the use of multiple raters could help improve the reliability of the data 

analysis. However, the “quick and dirty” knowledge elicitation and analysis techniques used in 

this chapter have been found to be useful in supporting the design of visualizations and 
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information technology for healthcare applications where there is limited access to decision 

makers and subject matter experts (Sockolow et al., 2017). 
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Chapter 4  

4 Short-term Planning Tool for Ornge 

Short-term planning (STP) refers to the logistical decisions that Ornge’s dispatchers make for 

patients that require immediate interfacility transfer (i.e., urgent or emergent patients) and for 

scene-responses. In contrast to long-term planning, which often occurs a day or more in advance 

with the assistance of optimization decision support, STP decisions are made under highly 

dynamic situations characterized by limited and uncertain information and high time pressure. 

This chapter presents the proposed design for a STP tool interface and workflow that motivates 

the experimental tasks used in the following studies. The goal of the tool is to support STP 

decisions using the algorithm created in earlier work (Fatahi, 2013), which was briefly described 

in Chapter 2. Although this dissertation mainly focuses on interfacility transfers, the tool is also 

applicable to other types of transfers completed by Ornge, such as scene-responses. As 

mentioned earlier, this dissertation and hence the tool adopts the perspective that presenting 

variability information about historical transfers in addition to point-estimates can help better 

support dispatcher time predictions. First, the goals for the STP tool are outlined. Next, a short 

description of the workflow and interface of the current CAD system used by Ornge for planning 

the logistics of transfers is described. The proposed interface for the STP tool and how it fits in 

the existing workflow are then presented. This chapter was adapted from a proposal that was 

submitted to Ornge and the STP tool is currently being implemented by Ornge’s developers as 

part of their new FlightVector CAD system. The evaluation of its effectiveness in operation is 

therefore left for future research. 

4.1 Goals for the Short-term Planning Tool 

Based on the literature cited earlier and the two field studies described in Chapter 3, four major 

goals for the STP tool were identified: 

1. Generate time predictions quickly: Due to the high time pressure, and the limited 

amount of time available for generating time predictions, the tool must help dispatchers 

quickly predict transport times. 

2. Provide point-estimates: Predicted transport times, such as the time to definitive care, 

time to bedside, and out-of-hospital time were found to be a key component of dispatch 
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decisions. These predicted times were an artifact used to communicate information 

between different members of the dispatch team and to external partners (i.e., hospitals or 

local paramedics). Due to the high time pressure, point-estimates are easier to 

communicate and use in subsequent decision making tasks by the dispatch team. 

Furthermore, point-estimates of predicted times are required for record keeping purposes 

within the CAD system. 

3. Encourage planners to choose a single best prediction: The field studies found that 

planners adjust their predictions for the given situation based on their understanding of 

the current situation and their background knowledge. Because the predicted times are 

communicated to other dispatchers, the tool should encourage the planners to produce a 

single prediction that represents their best understanding of the current situation. 

4. Assist dispatchers with gauging the reliability of the suggestions: Finally, the field 

studies showed that reliability information can help build trust with experienced users and 

can help less experienced users be more critical of a decision-aid’s predictions. 

4.2 Current Short-term Planning Interface in FlightVector 

FlightVector is a commercially available dispatch software system that was customized by the 

vendor to suit Ornge’s unique needs. FlightVector allows dispatchers to plan the logistics of an 

interfacility transfer or scene response, and these plans can incorporate multiple vehicles, 

paramedic and flight crews, and patients. This is accomplished through the “Plan” interface as 

shown in Figure 7. Through the Plan interface, the transport planner can build the transport 

solutions described in Chapter 3.  

Within FlightVector, planners can assign vehicles and paramedic crews to patient transfers. The 

Plan window in Flight Vector allows the user to assign the waypoints associated with a transfer 

(i.e., the bases, airports/helipads, and hospitals). For a typical interfacility transfer the major 

waypoints would be the Ornge base where the vehicle is based, the sending hospital, and the 

receiving hospital. For more complex transfers, planners can input additional waypoints (e.g., to 

pick-up paramedics en-route to the patient). The Plan window also presents the estimated time en 

route (ETE) and estimated transfer times (ETT). The user enters their estimates for each portion 

of the transfer or relies on default values (e.g., for in-hospital times). As it is currently laid out, 
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the Plan interface is built to help primarily with the logistics of the transport portions of a patient 

transfer (i.e., flight planning).  

 

Figure 7: The Plan interface in FlightVector with proposed STP Estimates button indicated 

by the red arrow 

A button (“STP Estimates”) will be added to the plan screen that will start the STP tool. 

Information will be passed to the tool about the current plan, and once the user checks over the 

times predicted by the STP, the predictions will be passed back to the CAD system to 

automatically fill in the required time estimate fields for the plan, as shown in Figure 8. This 

automation will help reduce the workload of planners which may allow for more time to be 

devoted to the generation of predicted times.  
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Figure 8: Waypoint interface from Flight Vector showing estimates for Time on Ground 

and Time En route highlighted in red 

4.3 Short-term Planning Tool Interface 

Once the user presses the STP Estimates button in FlightVector, they would be brought to the 

STP tool. The STP tool helps dispatchers estimate and predict patient transfer times by 

presenting to the user historical data and the decision support algorithm outputs. Dispatchers can 

either use the suggestions provided by the STP tool or they can adjust the transfer time 

predictions based on their knowledge of the current situation. In this section, the various 

elements of the interface are described in more detail. 

The STP tool breaks down a transfer into the intervals presented in Chapter 2 (Figure 3), which 

represent the steps for interfacility transfers. Figure 9 shows the proposed STP tool interface, 

which is divided into two major sections: 1) Total Transfer Time Estimate (highlighted in red as 

an aid for the reader), and 2) Individual Interval Estimates. The Total Transfer Time Estimate 

section provides a quick overview of the entire trip duration, and provides the time to definitive 
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care, the time to bedside, and out of hospital time. The total time to definitive care is represented 

as the sum of the time it takes to complete each interval of the transfer.  

 

Figure 9: The STP Tool Interface, with the Total Transfer Time Estimate section at the 

top, and the Individual Interval Estimates section below 

In the Individual Interval Estimates section, information is shown about each interval including 

the location, the vehicle used during that interval, the predicted time, and the data used to 

generate the estimate. The data shown under the estimate data column will depend on the 

algorithm used to generate the estimate (see Fatahi, 2013; Giang, Donmez, Fatahi, et al., 2014 

for a description of the underlying algorithms). When historical data are used to predict, a 

visualization of the historical data is provided. Figure 9 shows one example of such a 

visualization using Mean and Standard Deviation plots. Other possible visualizations for 

displaying this information are discussed in Section 4.4 and will be covered in more detail in 

Chapter 6 of the dissertation. When models or mapping software are used to predict an interval, 

then the source of the prediction is clearly listed, to distinguish it from historical data, along with 

any other important information (e.g., the distance travelled). The last column (OK?) represents 

whether the user thinks the prediction is acceptable; all predictions are set to be acceptable by 

default and can be changed by the user.    
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If a user suspects a prediction is inaccurate and wishes to adjust the prediction they can click on 

the green checkmark, which unlocks interface controls to adjust the predicted value. When 

historical data are used for prediction, a slider appears on the visualization which allows the user 

to adjust the prediction to one that they think is more accurate. Users may also adjust their 

prediction by entering the value directly into the text input box in the time column, or by using 

the arrows to adjust the predictions up or down in minute increments. While this adjustment is 

being conducted, the interval that is being adjusted is highlighted in red in both the Total 

Transfer Time segment and the Individual Interval Estimate segments. The numeric prediction in 

the Total Transfer Time segment is also updated allowing users to see how their adjustments 

change the total time to definitive care. Once the user finds all the predictions acceptable, they 

can click on the accept predictions button, which passes these values back to the CAD system. 

Alternatively, they may hit the reset button to reset all predictions to the default tool predictions. 

4.4 Historical Data Visualizations  

Figure 9 utilizes Mean and Standard Deviation (Mean&SD) visualizations for historical data. 

Table 1 presents three commonly used methods for displaying historical data that can be used in 

the STP tool. The Mean&SD visualization shows the average historical time along with the 

variability of the historical data. The Boxplot visualization shows the minimum, 25th percentile, 

median, 75th percentile, and maximum values. Finally, the Dotplot visualization shows the 

historical data points and their distribution. The time scale of the historical data being displayed 

(e.g., the range of the x-axis of the visualizations) should be selected based on the entire set of 

historical transfer data for that interval in order to provide users with a sense of the range of 

possibilities. These display formats represent common methods for displaying and 

communicating data in scientific and technical fields. However, further research is required to 

determine how different visualizations influence prediction behavior. This question will be 

explored in the second half of this dissertation. 
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Table 1: Historical Data Visualizations 

Mean & SD 

 

Boxplot 

 

Dotplot 

 
 

 

 

4.5 Conclusion 

This chapter proposed an interface and workflow for a STP tool that uses historical data and 

other methods to help support the patient transfer time predictions. The proposed STP tool was 

created based on design goals informed by the field studies from Chapter 3 and is currently being 

implemented at Ornge. However, a number of open research questions remain about how such a 

tool would be used by dispatchers, which are explored in the second half of the dissertation. The 

STP tool interface and workflow is one of the contributions of the dissertation. They also 

inspired the structure of the tasks used in the following experimental studies that examined how 

commonly used historical data visualizations (e.g., boxplots) are interpreted by individuals to 

support the prediction of future values of a variable, and what factors influence these predictions. 
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Chapter 5  

5 Literature Review of Time Prediction using 
Visualizations of Historical Data  

This chapter reviews the existing literature on how individuals generate predictions of future 

variables, such as time, when supported with visualizations of historical data. The major 

contribution of this chapter is a proposed framework for understanding prediction behavior that 

was used as the basis of experiments presented in the following chapters. 

5.1 Prediction of Future Values under Uncertainty 

Decision makers are often required to estimate current and future values of key decision making 

parameters and variables. These estimations occur across a wide variety of complexities and 

abstractions, from the generation of computational models and scenario analysis, such as in 

policy-making (National Research Council, 1996; Walker et al., 2003), to predictions of the 

future state of a single variable of interest, such as activity duration (Burt & Kemp, 1994; Koch 

& Kleinmann, 2002) or cost (Flyvbjerg, Holm, & Buhl, 2002; Khamooshi & Cioffi, 2013). This 

latter type of estimation is often found in short-term decisions where decision makers are 

required to estimate the outcome of a familiar but uncertain process. As presented earlier, in the 

medical dispatch context at Ornge, predicted patient transfer times are used to select an 

appropriate method of transportation, to coordinate patient hand-off between different vehicles, 

to support hospitals in preparing for incoming patients, and for record-keeping purposes for 

accountability reasons in order to justify dispatch decisions (Giang, Donmez, Fatahi, et al., 2014; 

Giang et al., 2016).  

Decision-aids that present historical data on key decision making variables can be used to 

support grounded, evidence-based predictions of future values. Historical data can reveal the 

underlying distribution of the variable of interest, including central tendency and dispersion. The 

central tendency can be used in prediction for reducing long-term prediction errors (i.e., mean), 

or as an important indicator of the probability (i.e., 50% chance of the data being above or below 

the median) or of typical values (i.e., mode). Dispersion (variability) can provide insights into the 

uncertainties associated with the process that generates the variable of interest (e.g., weather 



46 

 

affecting medical transfer times), with larger dispersion likely associated with higher process 

variability.  

Uncertainty as a form of meta-information can be informative to decision makers (Bass, 

Baumgart, & Shepley, 2013; Bass & Pritchett, 2008; Baumgart, Bass, Voss, & Lyman, 2015; 

Bisantz et al., 2009; Lipshitz & Strauss, 1997; McQueary, Krause, Santos, Wang, & Zhao, 2004; 

Pfautz et al., 2006). Although previous studies have shown that displaying uncertainty 

information leads to better decisions (Bisantz et al., 2011; Joslyn & Grounds, 2015; Joslyn & 

LeClerc, 2012; Nadav-Greenberg & Joslyn, 2009; Savelli & Joslyn, 2013), these studies have 

focused mostly on decision outcomes rather than on the user predictions about a variable’s 

outcome. Motivated by the medical dispatch decision context, where travel time predictions have 

significant value beyond their use in dispatch decision making, the focus of this dissertation is on 

variable prediction behavior as opposed to decision outcomes.  

5.1.1 Predictions Aided by Decision Support 

While extensive research has investigated how individuals predict the future (e.g., Burt & Kemp, 

1994; Kahneman & Tversky, 1982a; Mannes & Moore, 2013), only a limited number of studies 

focused on how predictions of variables (i.e., time or location) are made when the user is 

provided with uncertainty information. Furthermore, some of these studies have focused on 

spatial predictions (Herdener, Wickens, Clegg, & Smith, 2015; Pugh et al., 2017), and have 

focused on extrapolations based on trend data, a task characteristically different than predicting a 

future variable value based on a historical distribution. However, research has shown that 

presenting information about the variability of a key decision cue can improve decision 

performance with a decision-aid beyond simply presenting information about the process that the 

automation is using to generate its’ suggestions (Bass et al., 2013; Bass & Pritchett, 2008), 

highlighting the importance of showing historical variability information to support predictions. 

Among those studies that focused on the prediction of a future value based on a distribution, 

Nadav-Greenberg and Joslyn (2009) and Savelli and Joslyn (2013) asked their participants to 

predict nighttime low temperatures based on forecasts with predictive intervals. This information 

was presented through numeric, verbal, and graphical display formats. Both studies found that 

participants tended to produce predictions that were lower than the point-estimate of the forecast 

(i.e., central tendency value) when a prediction interval was provided numerically or verbally, 
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suggesting that participants adjusted their predictions in the presence of uncertainty information 

in these display formats. However, such a finding was not observed for the graphical display 

condition; participants’ predictions were not significantly different than the central tendency 

value. A similar result was observed when participants were presented with just the central 

tendency value with no predictive interval; their predictions again did not differ from this central 

tendency value. These findings suggest that display format can have an effect on how decision 

makers use uncertainty information when making predictions. Ibrekk and Morgan (1987) 

investigated prediction behavior to compare nine different visualizations of snowfall forecast 

(e.g., violin plot, boxplot, cumulative distribution function) and found that participants attempted 

to locate the most saliently presented central tendency measure of the visualization as their best 

estimate of the forecast. It appears that with graphical displays, individuals are likely to rely on 

the saliently presented central tendency point to make their predictions.  

In addition to considering the location of the predicted value relative to the central tendency 

point, prediction behavior may be characterized by the individual’s judgement about how likely a 

predicted value is. Individuals have been shown to develop internal probability models to help 

translate graphical elements of uncertainty visualizations (i.e., uncertainty ranges or error bars) 

into probabilities (Tak, Toet, & van Erp, 2015; Tak et al., 2014). These internal probability 

models represent the individual’s subjective interpretation of the probability distribution 

represented in the visualization. Tak et al. (2014, 2015) found that the internal probability 

models of uncertainty visualizations were best fitted by a normal distribution, suggesting that 

participants felt that the probability was highest toward the center of the visualization range, and 

decreased when it was further from the central tendency. However, the exact characteristics of 

the distribution varied based on the display format used and on the individual’s numeracy. 

However, so far, no studies on prediction with uncertainty information have attempted to 

characterize prediction behavior using the decision maker’s internal probability model. 

The literature is also limited in terms of characterizing prediction behavior when uncertainty 

information is presented in different display formats. For example, individuals may rely on 

graphical features of historical data visualizations to assist with their predictions and/or they may 

rely on their internal probability models. Historical data are often summarized and presented in 

technical fields and scientific literature using graphical methods such as boxplots (Gschwandtnei, 

Bögl, Federico, & Miksch, 2016; Ibrekk & Morgan, 1987), and these visualizations vary in terms 
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of how the uncertainty information is aggregated and which statistics are salient (e.g., mean vs. 

mode). Visualizations such as quantile dotplots (Kay, Kola, Hullman, & Munson, 2016) provide 

a potential understanding of the entire distribution. Other visualizations, such as error bars and 

predictive intervals (Savelli & Joslyn, 2013), aggregate uncertainty into bounds. Finally, 

visualizations that only show a point-estimate do not provide any uncertainty information. Since 

uncertainty information can provide the user with a better understanding of the underlying 

process they are trying to predict, the different methods for aggregating and presenting historical 

data may result in different prediction behavior. 

5.1.2 Contextual Information 

In addition to display format, there are many other factors that may influence how users interpret 

uncertainty information to predict future values. One such factor is contextual information. In 

situations where there is an asymmetrical distribution of information between a decision-aid and 

a human, as is the case in medical dispatch where dispatchers have information about the current 

situation that may not be explicitly encoded in an algorithm, joint human-automation decision 

systems have been shown to outperform the models alone (Yaniv & Hogarth, 1993). Contextual 

information can be the source of this information asymmetry. Previous work (Visschers, 

Meertens, Passchier, & de Vries, 2009; Wallsten, Fillenbaum, & Cox, 1986; Weber & Hilton, 

1990; Windschitl & Weber, 1999) has found that individuals adjust their interpretations of both 

numeric and verbal representations of uncertainty based on contextual information.  

One such contextual factor is the perceived base rate of the events being described by the 

uncertainty information, which was examined in a series of two experiments by Wallsten et al. 

(1986). In the first experiment, the authors examined how verbal indicators of probability, such 

as “likely” or “possible”, were interpreted by their participants in terms of numeric probabilities. 

Sixty meteorologists, professionals that are familiar with dealing with both numeric and verbal 

probabilities, were asked to report the numeric probability corresponding to a given verbal 

indicator of probability for four different types of medical scenarios. Two of the medical 

scenarios were selected by the experimenters to correspond to medical events that have a low 

base rate (i.e., is not likely to occur), and the remaining two were selected to correspond to 

medical events that have a higher base rate (i.e., is more likely to occur). In the second 

experiment, 72 undergraduate participants were asked to do a similar task with non-medical 
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scenarios that were selected through a pilot study to have different base rates. Across both 

experiments, the authors found that the same verbal indicators of uncertainty (i.e., likely) were 

associated with higher numeric probabilities when the context referred to an event with higher 

base rate (e.g., “person will drop a non-required course after getting an F on their first exam” vs. 

“person will drop a non-required course after getting a B on their first exam”. Thus, the 

individuals’ interpretation of uncertainty information was influenced by their knowledge of the 

specific case in question, and Wallsten et al. (1986) proposed that the final interpretation was an 

averaging between the probability suggested by the uncertainty information and the base rate 

probabilities. 

Similarly, research has also found that individuals consider the severity of a situation when asked 

to interpret verbal indicators of uncertainty. In a series of three experiments, Weber and Hilton 

(1990) found that in addition to base rate, event severity also changed the interpretations of 

verbal indicators of uncertainty. Each of the three studies were conducted with undergraduate 

participants. The first two studies used similar medical scenarios as the first experiment from 

Wallsten et al. (1986), which Weber and Hilton (1990) separated into high severity and low 

severity cases. The third study experimentally manipulated the scenarios using adjectives 

describing the condition (severity: mild vs. severe; base rate: common vs. rare; e.g., you will 

likely get a severe and common case of influenza vs. you will likely get a mild and rare case of 

influenza). Across the three experiments, participants were asked to assign a numeric probability 

to the verbal indicators of uncertainty (e.g., “possible”, “slight chance”), and the results indicated 

that after controlling for base rate context effects, the severity of the scenario also changed the 

interpretation of the uncertainty information with higher severity scenarios being linked to higher 

numeric probabilities. While the base rate affects probabilities, the event severity should not.   

The studies cited in the two paragraphs above highlight the fact that the usage of uncertainty 

information is dependent on context. However, these previous studies focused on uncertainty 

information dealing with membership within a class (i.e., the probability of having a disease or 

not), rather than the information about the variability of a stochastic process (i.e., a patient 

transport time). Whether context also plays a role in the interpretation of visualizations of 

variability information is an open question and is an important component in understanding how 

visualizations of historical data to support time prediction may be used in practice.  
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As reported in Chapter 3, two types of information that might influence dispatcher predictions 

were identified through field studies. The first type of contextual information, likelihood-

information, is associated with the likelihood of certain outcomes (e.g., snow is likely to result in 

slower than normal transfer times). The second type, consequence-information, is associated 

with the gains or penalties related to certain outcomes (e.g., financial costs when the transfer 

time is long enough to warrant overtime pay). Likelihood-information comes from having 

knowledge that certain transfer related conditions are occurring, and may influence behavior 

similarly to the base rate context information examined by Wallsten et al. (1986). The likelihood-

information may allow participants to estimate a conditional probability based on their 

understanding of the overall probability distribution. Individuals may adjust their predictions 

based on this posterior probability distribution, or adjustments may be made based on simple 

heuristics about the direction and magnitude of the effect (e.g., intubated patients take on average 

10 minutes longer than normal). In each case, dispatchers that adjust their predictions based on 

likelihood-information may be able to predict transfer times that are tailored specifically to the 

situation, since the probability distributions for the time should be impacted by these types of 

factors.  

In contrast, information about consequence (e.g., gains and penalties) may influence the utility of 

different predicted times. Changes in utility should guide decisions made using the time 

predictions but does not help with accuracy of time predictions. However, as seen with context 

information about severity (Weber & Hilton, 1990), consequence-information may still influence 

prediction behavior, since individuals can adjust their predictions in an effort to forestall bad 

outcomes, which is one strategy for coping with uncertainty (Lipshitz & Strauss, 1997). For 

example, dispatchers may overestimate the time required for a transfer in anticipation of 

unforeseen delays, or they may underestimate the time required if a longer transfer would require 

a costlier resource. If these systematic adjustments occur, then they may need to be mitigated 

using techniques such as training.  

5.1.3 Numeracy and Education 

Prediction strategies may also vary between different users due to individual differences, such as 

numeracy ability (Grounds & Joslyn, 2018; Tak et al., 2014, 2015). Numeracy refers to an 

aptitude and preference for using numeric information such as probabilities, ratios, and graphics, 
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and has been found to influence the interpretation of uncertainty information. For example, 

Grounds and Joslyn (2018) found that, for most individuals, road-salting decisions that were 

made with numeric uncertainty information, in the form of probabilistic forecasts, resulted in 

better decisions than those made with only point-estimate forecasts. However, individuals with 

extremely low numeracy scores did not benefit from the uncertainty information. Higher 

numeracy has also been found to improve the interpretation of uncertainty visualizations 

(Grounds, Joslyn, & Otsuka, 2017; Tak et al., 2014, 2015). Tak et al. (2014, 2015) found that 

when asked to interpret visualizations of uncertainty, individuals tended to develop internal 

probability models that followed a normal distribution. The authors also found that individuals 

with lower numeracy generated models that were flatter and less normal (Tak et al., 2014).  

The effect of education on the use of uncertainty information is less well understood. Ibrekk and 

Morgan (1987) did not find strong associations between their participants’ level of education and 

their interpretations of uncertainty visualizations. However, Grounds and Joslyn (2018) found 

that participants with higher education made better decisions when provided with only point-

estimate forecasts (i.e., no uncertainty information) than those with lower education, suggesting 

that higher education may help participants think probabilistically even when they are provided 

with no uncertainty information. Taken together, poor numeracy and lower levels of education 

may hinder the ability for individuals to interpret and use uncertainty information.  

5.2 Proposed Framework for Predictions of Time using 
Visualizations of Historical Data 

Based on the literature presented, a framework is proposed for how individuals use visualizations 

of historical data in order to predict future values of a variable, such as time (Figure 10). This 

framework is composed of five parts: the decision support, the context information, the 

individual difference factors, the individual’s internal model, and the final predicted value. This 

framework posits that when individuals are presented with visualizations of historical data, they 

first internalize the information provided by generating an internal probability model. Using this 

probability model, individuals then choose a point that represents their “best estimate” of the 

variable they are predicting. As discussed in earlier sections, display format, contextual 

information, and individual factors can influence both the internal probability model that is 

generated and the point chosen from this model. The following sections further discuss the 
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framework in terms of how display format and contextual information may influence prediction 

behavior; Chapters 6 and 7 present two experiments focusing on these aspects of the framework. 

The influence of individual difference factors, such as numeracy and education, are beyond the 

scope of this dissertation and is left to future work but was partially controlled for in the 

following experiments by screening participants using a test of statistical knowledge. 

  

 

Figure 10: Proposed framework for time predictions with decision support 

5.2.1 Prediction behavior based on display format 

As mentioned previously, the graphical features of a data visualization can change its 

interpretation (Ibrekk & Morgan, 1987; Savelli & Joslyn, 2013; Tak et al., 2014, 2015), 

especially depending on how the uncertainty information is aggregated (Greis, Ohler, Henze, & 

Schmidt, 2015). While some studies have shown similar levels of performance with uncertainty 

visualizations based on different visual characteristics (Bisantz et al., 2005; Finger & Bisantz, 

2002), these studies have typically provided the same amount of uncertainty information given 



53 

 

that they were focusing on categorical membership probabilities. In the context of time 

predictions, commonly used display formats (e.g., Mean&SD, Boxplot) aggregate uncertainty to 

varying amounts (e.g., Mean&SD provides standard deviation bars whereas Boxplots provide 

both the interquartile range as well as the overall range).  

Figure 11 provides an example of how display format may change a prediction made by a user of 

decision support. The display format used in this example is a dotplot where each observation is 

represented as a dot, and the visualization provides both a salient measure of the central tendency 

of the historical data (i.e., the mode, highlighted with an arrow in Figure 11), but also shape and 

skewness information that can be used to understand the underlying process. Based on the 

proposed framework, using this information, the user generates an internal probability model and 

then chooses a point along this model. With no context information, the user may choose the 50th 

percentile point as their prediction, as half of the historical data are above and the other half is 

below this point in the distribution. It is also possible that the user may rely heavily on the 

visualization, and choose a saliently presented central tendency measure, as was suggested by 

previous research (Ibrekk & Morgan, 1987; Nadav-Greenberg & Joslyn, 2009). In this case, 

different display formats may lead to variations in prediction behavior as they emphasize 

different central tendency measures. The influence of display format on prediction behavior was 

explored in an empirical study that is presented in Chapter 6.  

 

Figure 11: Example of the influence of display format on predicted value 
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5.2.2 Prediction behavior based on context information 

Within the proposed framework, the historical data represent a set of similar historical events 

that the decision-aid has aggregated to help support the user’s understanding of the process for 

which they are making a prediction. Context information, in this case, represents information that 

the user has access to about the current situation that may not be explicitly encoded into the 

historical data provided by the decision-aid. As mentioned previously, two types of context 

information that may be relevant to dispatcher’s predictions of patient transfer times were 

identified: likelihood-information and consequence-information. Within the proposed 

framework, these two contextual information types influence different parts of the prediction 

process.  

Figure 12 provides an example of how likelihood-information influences the predicted value. 

The framework proposes that the likelihood-information changes the internal probability model 

generated by the user. For example, information such as “this paramedic team is experienced and 

faster in preparing their patients for transfer” can change the user’s interpretation of the historical 

data, resulting in a different internal probability model that better represents the subset of events 

that are directly relevant to a fast paramedic team. This would differ from the internal probability 

model generated without context information, as was shown earlier in Figure 11, and lead to a 

different predicted value.  



55 

 

 

 

Figure 12: Example of the influence of likelihood-information on predicted value 

In contrast, consequence-information, such as “if the transfer takes longer than 30 minutes, there 

is a higher chance of loss of life or limb for this patient” should not change the internal model 

generated but what the user selects as their prediction (Figure 13). Based on the severity of the 

consequences, users may select a more conservative value in order to avoid underestimating the 

time. However, this change in prediction strategy can be considered to be a bias if the goal is to 

minimize prediction error. The influence of context information on prediction behavior and 

strategies was explored in a second experiment. This experiment is presented in Chapter 7. 
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Figure 13: Example of the influence of consequence-information on the predicted value 
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Chapter 6  

6 Influence of Display Format on Time Prediction 

This chapter investigates how different historical data display formats influence the choice of a 

predicted value. In particular, this chapter examines whether, as suggested by pervious literature, 

saliently presented central tendency measures (i.e., median, mean, or mode) are likely to be 

chosen as the prediction. In addition, this chapter addresses the gaps in the literature identified 

earlier by examining (1) how predictions are related to the individual’s internal probability 

model of the data, and (2) how the magnitude of variability in the process (i.e., how much 

variability there is in the historical data), along with the amount of variability information 

presented by a visualization (i.e., the display format), influence prediction behavior. Four 

commonly used methods for visualizing datasets containing repeated observations of a single 

process, such as the transport time between two hospitals, were evaluated: Median-only 

visualization, Mean&SD visualization, Boxplot, and Dotplot.  

The major findings of this experiment were that the display format influences prediction 

behavior; more variability information leads to more deviations from the saliently presented 

central tendency point. However, even with no variability information, people do deviate from 

the point-estimate; e.g., by making conservative predictions suggesting that prediction behavior 

is also tied to factors outside of the information presented in the visualization. The presence of 

variability information, especially in the Boxplot and Dotplot visualizations, allowed participants 

to adjust their confidence in their predictions, which may have beneficial effects on subsequent 

decisions made using the predictions. 

6.1 Experimental Scenario and Visualizations Tested 

Due to the limited availability of the highly trained dispatchers at Ornge, an empirical study with 

non-dispatch participants was carried out to examine the influence of display format on 

prediction behavior. The study used a fictional scenario where participants were asked to predict 

the duration of scientific tasks completed by planetary exploration rovers using visualizations of 

historical task completion times. The unfamiliarity of this fictional scenario helped control for 

differences in background knowledge and encouraged participants to rely heavily on the 

visualizations, rather than relying on their own personal experiences and biases with the domain.  
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Four visualizations (Figure 14) were used, each with increasing amounts of information about 

the dispersion and shape of the distribution of historical observations. These visualizations were 

chosen from commonly used methods for displaying and communicating data in scientific and 

technical fields. 

 

Figure 14: The visualizations of historical data used in the experiment, with the x-axis 

representing task duration: a) Median-only, b) Mean & Standard Deviation, c) Boxplot, 

and d) Dotplot. The arrows and text in blue present the additional information provided to 

the participants during training. 

In the baseline, i.e., the central tendency only visualization (Median-only), the median of the 

historical sample was displayed as a vertical bar similar to the median line in a boxplot. The 

Mean & Standard Deviation (Mean&SD) visualization showed both a measure of central 

tendency and a symmetric measure of dispersion (i.e., the mean +/- one standard deviation). The 

Boxplot visualization provided a measure of central tendency (median) as well as two measures 

of dispersion (interquartile range and range). The Boxplot also provided information about the 

shape of the historical sample. The Dotplot provided shape information but used discrete 

markings for each observation, furthermore the mode of the historical data could be quickly 

identified using this visualization (the x-value that corresponds to the peak). Thus, each 

visualization had a central tendency measure that was saliently denoted; this central tendency 

measure was also highlighted during training as presented in Figure 14. 
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6.2 Methods 

6.2.1 Experiment Design 

The experiment was a mixed factorial design with visualization condition (Mean&SD, Boxplot, 

or Dotplot) as a between-subjects variable, and the presence of variability information (not 

present vs. present) and the variability magnitude (smaller vs. larger SD) as within-subjects 

variables (Table 2). Participants were randomly assigned to one of three visualization conditions 

(Mean&SD, Boxplot, or Dotplot), with 20 participants per condition. Each participant was 

presented with the Median-only visualization first as a baseline before completing their assigned 

visualizations (one of the three visualizations that provide variability information). Participants 

completed six trials with the Median-only visualization, followed by six trials with the other 

visualization type that they were assigned, resulting in 12 trials per participant. The latter half of 

the trials had both smaller and larger magnitudes of variability (i.e., smaller SD vs. larger SD); 

each variability level was repeated in three trials. 

Table 2: Experimental design for display format experiment 

 Variability Information 

Visualization Condition Not Present; trials 1-6 Present; trials 7-12 

Mean & SD 

participants # 1-20 

Median-only 

datasets 1-6 
Mean & SD 

Smaller SD 

datasets 1-3 

Larger SD 

datasets 4-6 

Boxplot 

participants # 21-40 

Median-only 

datasets 1-6 
Boxplot 

Smaller SD 

datasets 1-3 

Larger SD 

datasets 4-6 

Dotplot 

participants # 41-60 

Median-only 

datasets 1-6 
Dotplot 

Smaller SD 

datasets 1-3 

Larger SD 

datasets 4-6 

 

Given that a visualization was repeated in multiple trials by a participant, different datasets were 

created to represent different rover task completion scenarios. Overall, six datasets were created 

to serve as the historical data (Appendix C); three had smaller SD and three had larger SD. The 

datasets were used twice, once for trials 1-6 and once for trials 7-12 (see Table 2). Each dataset 

consisted of 50 observations sampled from the normal distribution; the normal distribution was 
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used as it represents many natural phenomena. Both skewness and kurtosis of these datasets were 

kept between -0.5 and 0.5 to ensure that the datasets appeared normal when visualized. Smaller 

SD datasets came from distributions with SDs of 2 minutes, the other three came from 

distributions with SDs of 5 minutes. Order of presentation of the datasets was randomized.  

6.2.2 Participants 

Participants were recruited using a paid screening questionnaire on Amazon Mechanical Turk 

(MTurk), an online platform for crowdsourcing tasks, which was open to all MTurk Workers in 

the United States and Canada with Masters Qualification, i.e., top workers as designated by 

MTurk who have a high degree of accuracy in their work. Participants were screened for self-

reporting to have normal or corrected-to-normal vision and normal color perception. In addition, 

the screening questionnaire provided definitions and examples of central tendency (i.e., mean, 

median, and mode) and dispersion (i.e., range, interquartile range, and standard deviation) 

concepts. Participants were tested on these concepts and had to score at least 75% to qualify for 

the study. The experiment took approximately 1 hour, and participants were compensated a total 

of US$6.5 ($1.5 for the screening questionnaire and $5 for the actual experiment). 

Sixty participants (37 male, 23 female, mean age=36.7 years, SD=9.3) completed the study; they 

had scored an average of 89% (SD = 11) on the screening test. Thirty-seven participants had 

taken at least one probability or statistics course at the post-secondary level and a further 12 had 

completed a probability or statistics course at the high school level. The study was approved by 

the University of Toronto Research Ethics Board. Informed consent was obtained from each 

participant for both the screening questionnaire and the actual experiment. The informed consent 

document as well as other relevant experimental materials are presented in Appendix C. This 

experiment was based on a pilot experiment (Giang & Donmez, 2015) that was used to 

determine the number of participants required and to refine the following experimental tasks. 

The methods and results from this pilot test can be found in Appendix D. 

6.2.3 Experimental Tasks 

In the prediction task (Figure 15), participants were presented with a visualization, were asked to 

predict how long it would take the rover to complete its task and responded by dragging a 

selection bar with their selection restricted to half minute intervals. This experimental task was 



61 

 

similar to the workflow proposed for the STP tool in Chapter 4. After providing their prediction, 

participants were also asked to rate their confidence in their choice on a scale between 1 and 100. 

 

Figure 15: The prediction task 

 

In the probability rating task (Figure 16), participants were shown their predicted task duration 

and were asked to estimate the probability that the actual rover task duration would be equal to 

or lower than their prediction. In other words, they were asked to estimate the corresponding 

cumulative distribution function (CDF) value, i.e., P (rover task duration ≤ predicted rover task 

duration). The probability rating task was designed to provide insight into the participants’ 

internal model of the underlying probability distribution and was based on the Tak et al. (2014) 

study. 
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Figure 16: The probability rating task 

6.2.4 Procedure 

The experiment was conducted online using a custom-built website. Prior to the start of the 

experiment, participants were provided training on the visualizations they were assigned, which 

described the various graphical features of each visualization and their relation to the historical 

data being presented. This introduction highlighted the saliently denoted central tendency 

measures (Figure 14) and provided further verbal description of the central tendency and 

dispersion measures and the visualizations used in the experiment. Participants were then 

required to demonstrate their understanding of the visualizations by answering correctly to a 

series of test questions before being allowed to continue with the experiment. The participants 

then completed a practice session of two trials, one with the Median-only visualization and the 

other with the visualization with variability information that they were assigned. Participants 

were responsible for the two experimental tasks for each trial: the prediction task and the 

probability rating task.  

Before the practice session, the participants were provided with the following instructions and 

interactive training about the experimental tasks: “Your first task is to estimate how long it will 
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take the rover to finish its currently assigned task, using the historical information as a guide. 

These estimates will be used by other mission commanders in rover logistical decisions. 

Therefore, it is important that your estimates are as accurate as possible. Use the slider below 

the visualization to select your best estimate of how long you think the rover will take to finish 

this rock scanning task. The blue line represents your current estimate. When you are happy with 

your estimate, click on the accept button. Your second task will be to estimate the probability the 

rover will be able to finish its current task by the estimate you provided above (i.e., how likely 

the rover is to finish by your estimated time). This region of interest is shown below as area that 

is not shaded in grey, and your estimate is shown using the green line. Use the slider below the 

visualization to select your probability estimate that the actual task time will be less than or 

equal to your estimated time (i.e., the probability that the actual task time is NOT in the shaded 

grey area).” After completing the experimental trials, participants filled out a questionnaire 

aimed to assess their prediction strategies. 

6.2.5 Dependent Variables and Statistical Analysis 

Prediction behavior was assessed using four dependent variables: 1) whether participants choose 

the saliently presented central tendency point as their prediction, 2) the direction of the 

prediction relative to this central tendency point, 3) the magnitude of the deviation of the 

prediction form this central tendency point, and 4) their confidence in their prediction. Prediction 

behavior was further examined through the participants’ ratings of the probability associated 

with their prediction, and whether the predicted values chosen by participants represented the 

midpoint of their internal probability model. Prediction strategies were investigated through 

questionnaire responses.  

Statistical models were built using the SAS MIXED procedure for mixed effects linear models 

and GENMOD procedure for logistic and ordered logit models. Participant was used as a random 

factor in mixed effects models, with a compound symmetry variance-covariance structure. 

Generalized Estimating Equations were used in logit models to account for repeated measures. 

All statistical models were built using the three-way interaction between visualization condition 

(3 levels: Mean&SD, Boxplot, and Dotplot), variability information (Median-only vs. the other 

visualizations), and magnitude of variability in the dataset (small vs. large) unless otherwise 

stated. Apriori planned contrasts and estimated means were calculated using SAS’s estimate 
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command. Within the models reported in the results section, the visualization and variability 

information interaction represent the three visualizations with variability information, as well as 

three separate Median-only conditions for participants that experienced the Mean&SD, Boxplot, 

and Dotplot visualizations. The average of the three Median-only conditions was used for 

contrasts between the four possible types of visualizations (Median-only, Mean&SD, Boxplot, 

and Dotplot). Planned contrasts were also conducted between the small and large standard 

deviation conditions for each of the four visualization types (Mean&SD, Boxplot, Dotplot, and 

the average of the Median-only visualizations), and between the two levels of standard deviation 

for each visualization. The analysis code and SAS outputs can be found in Appendix E. 

6.2.6 Hypotheses 

It was hypothesized that most participants would choose the saliently denoted central tendency 

point in the visualization as their predicted value. It also hypothesized that regardless of the 

location of their prediction (i.e., on the central tendency point or not), the participants would be 

choosing the mid-point of their internal probability model as their prediction. Furthermore, it was 

hypothesized that increases in the amount of variability information provided in the visualization 

(based on display format) would not change participants’ prediction behavior but would change 

their confidence in their predictions as they would have more information about the process. 

6.3 Results 

6.3.1 Predictions on the Salient Central Tendency Point 

Overall, only 46% of predictions made with the Median-only visualization, 36% with the 

Mean&SD visualization, 28% with the Boxplot, and 22% with the Dotplot were on the saliently 

presented central tendency point (the median, mean, median, and mode, respectively). A logistic 

regression model was fit to examine the likelihood that the prediction was on the salient central 

tendency point (Figure 17). For smaller SD trials, participants were more likely to choose the 

salient central tendency as their prediction in the Median-only visualization than in the Boxplot 

(Odd Ratio – OR: 2.04, 95% Confidence Interval – CI: 1.02, 4.07) and Dotplot (OR: 3.49, 95% 

CI: 1.68, 7.28) visualizations. Similar results were observed for larger SD trials, but with 

marginal statistical significance: Median-only vs. Boxplot, OR: 2.23, 95% CI: 1.00, 5.00; 

Median-only vs. Dotplot, OR: 2.44, 95% CI: 0.99, 6.05. The main effect of variability magnitude 
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was not significant, χ2(1)=2.26, p=.13. These results suggest that trials with visualizations that 

had the most variability information (i.e., the Boxplot and Dotplot) resulted in a lower likelihood 

of the salient central tendency point being chosen as the predicted rover task duration. The 

magnitude of variability did not appear to influence the likelihood of predicting on the salient 

central tendency point. 

 

Figure 17: Statistical model estimates, odds and 95% CI, for the chosen predictions being 

on the saliently denoted central tendency point. Higher odds indicate greater likelihood. 

6.3.2 Direction of Prediction relative to the Salient Central Tendency Point 

For trials where the prediction deviated from the salient central tendency point, there were more 

predictions above this point than below (Figure 18). For these predictions, a logistic regression 

model was fit to examine the likelihood of the prediction being above the salient central 

tendency point as opposed to below. For smaller SD trials, participants were more likely to 

predict above with the Dotplot visualization than with the Median-only (OR: 14.34, 95% CI: 

1.83, 112.22), Mean&SD (OR: 23.50, 95% CI: 2.66, 207.56), and Boxplot (OR: 23.50, 95% CI: 

2.98, 185.31) visualizations. For larger SD datasets, participants were more likely to predict 

above with the Mean&SD visualization than the Dotplot visualization (OR: 2.59, 95% CI: 1.07, 
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6.29). Overall regardless of experimental condition, participants who deviated from the salient 

central tendency point in their prediction favored task durations that were longer than this value. 

Further, participants using the Dotplot visualization appeared to be highly influenced by the 

dataset that was being presented when compared to the other visualizations tested, suggesting 

that the additional shape information may have been guiding their predictions.  

  

Figure 18: Percentage of trials with predictions above the salient central tendency point as 

opposed to below 

6.3.3 Distance between Prediction and the Salient Central Tendency Point 

For predictions that were not on the salient central tendency point, the average deviation from 

this point was 1.8 minutes for the Median-only, 1.8 for the Mean&SD, 2.1 for the Boxplot, and 

1.7 for the Dotplot visualization. As mentioned earlier, participant inputs were restricted to half-

minute intervals; given that these average deviations are at least three times this restriction, the 

deviations from the salient central tendency were not likely due to input errors.  

The distance between the prediction and the salient central tendency point was divided into 4 

levels with roughly equal numbers of observations: between 0.5 and 1 (n=142), between 1 and 2 

(n=119), between 2 and 3.5 (n=82), and greater than 3.5 (n=114) minutes, and an ordered logistic 
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regression model was fit to this data; the binning was performed because the data was highly 

non-normal. Participants tended to predict further from the salient central tendency point in 

larger SD trials compared to smaller SD trials for the Mean&SD (OR: 4.8, 95% CI: 2.1, 10.7), 

Boxplot (OR: 4.6, 95% CI: 2.6, 8.0), and Dotplot (OR: 2.7, 95% CI: 1.9, 3.7) visualizations, but 

not for the Median-only visualization. Thus, participants, who deviated from the salient central 

tendency, appeared to deviate further when variability magnitude was larger and the 

visualization provided variability information.  

6.3.4 Confidence in Predictions 

A linear mixed model was fit to participants’ ratings of confidence in their predictions (Figure 

19).  

 

Figure 19: Statistical model estimates (means and 95% CI) for participants’ ratings of 

confidence in their predictions 

Participants were more confident in their predictions during smaller SD trials than larger SD 

trials for visualizations with variability information (Boxplot: Δ=7.3, 95% CI: 2.5, 12.2, Dotplot: 

Δ=17.3, 95% CI: 12.4, 22.2); this effect was only marginally significant for the Mean&SD 

visualization (Δ=4.3, 95% CI: -0.5, 9.2). The Dotplot, in particular, led to a large decrease in 

participants’ confidence for large variability trials. For smaller SD trials, participants were less 



68 

 

confident with the Median-only visualization than the Mean&SD (Δ= -9.7, 95% CI: -17.2, -2.2) 

and the Dotplot (Δ= -6.8, 95% CI: -14.3, 0.7) visualizations, with the latter comparison being 

only marginally significant (p=.08). For larger SD trials, participants were more confident with 

both the Median-only and Mean&SD visualizations than the Boxplot and Dotplot visualizations 

(Median-only vs. Boxplot: Δ=8.1, 95% CI: 0.6, 15.6; Median-only vs. Dotplot: Δ=9.7, 95% CI: 

2.2, 17.2; Mean&SD vs. Boxplot: Δ=14.3, 95% CI: 2.2, 26.4; Mean&SD vs. Dotplot: Δ=15.9, 

95% CI: 3.8, 28.0). 

6.3.5 Prediction Probability 

Participants were asked to estimate the probability that the actual rover task duration would be 

less than or equal to their own prediction. Two linear mixed models were fit to these 

probabilities for (1) when predictions were on the salient central tendency and (2) when they 

were not. When predictions were on the salient central tendency point, the corresponding 

probabilities were not significantly different than 50% (Figure 20, left). For the most part, when 

participants chose the salient central tendency point, they felt they were choosing a prediction 

that was the midpoint of the historical distribution. In contrast, when predictions were not on the 

salient central tendency point, the corresponding probabilities were significantly larger than 50% 

(Figure 20, right), suggesting that these participants did not consider their choice to be a 

midpoint of the historical distribution.  
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Figure 20: Statistical model estimates (means and 95% CI) for participants’ probability 

ratings of P (rover task duration ≤ predicted rover task duration) 

6.3.6 Strategies for Prediction 

Participants’ were asked to rate how consistent their prediction strategies were on a 5-point scale 

between strongly disagree and strongly agree. The majority of the participants responded with 

agree or strongly agree (Median-only: n=47 out of 60; Mean&SD: n=13 out of 20; Boxplot: 

n=15 out of 20; Dotplot: n=15 out of 20). Participants reported that they tended to rely on the 

mean (n=16 out of 20) for the Mean&SD visualization, and the median (n=14 out of 20) for the 

Boxplot visualization. However, the Dotplot visualization had more variance in terms of self-

reported usage of central tendency, with nine participants stating that they used the mean, seven 

participants stating that they used the mode, three stating that they used the median, and the 

remaining person using a combination of the median and mode. Participants who stated that they 

always chose a central tendency point as their prediction (Median-only: n=26 out of 60; 

Mean&SD: n=6 out of 20; Boxplot: n=4 out of 20; Dotplot: n=7 out of 20) were found to 

actually do so during the experiment suggesting that there was a specific group of participants 

who decided to always choose the central tendency rather than switching strategies on a per-trial 

basis. There were overall 10 participants (out of 60 total) who always chose the saliently denoted 

central tendency point across both visualizations they experienced.   
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6.4 Discussion 

Historical data are often used to help decision-makers anticipate and predict future values of 

important decision variables, but how individuals make these predictions is not well understood. 

According to the limited previous research (e.g., Ibrekk & Morgan, 1987; Nadav-Greenberg & 

Joslyn, 2009), individuals tend to pick the saliently presented central-tendency points as their 

prediction when they are presented with graphical visualizations. Similar results were expected 

in this experiment, given that the participants were asked to be as accurate as possible in their 

predictions and they were not explicitly presented any potential cost/reward structure that could 

bias them towards over or underestimation. The findings, however, contradict these earlier 

studies with the majority of the participants deviating from the saliently denoted central tendency 

point even when it was the only information provided on the visualization (i.e., Median-only). 

Furthermore, deviations from the salient central tendency point were more likely when the 

amount of variability information presented increased, providing evidence that the display format 

of the visualization influenced prediction behavior.  

As a novel contribution, this study also investigated how participants’ internal probability 

models were related to their choice of predicted value. When participants chose the salient 

central tendency point, they thought that this prediction was the midpoint of the historical 

distribution, which corresponded to our hypotheses. In contrast, when predictions were not on 

the salient central tendency point, the participants did not consider their prediction to be the mid-

point, suggesting some other strategy was used. The experiment purposefully used an artificial 

scenario with little contextual information so that the participants would rely solely on the 

presented visualizations. The participants who chose predictions that were not on the salient 

central tendency point, tended to pick values above this point suggesting a potential risk-averse 

prediction strategy.  

Since participants were asked to produce a prediction that would be communicated to and used 

by other team members for their scheduling tasks, some participants might have embedded their 

own biases into the task, despite the fact that they were asked to predict as accurately as possible. 

Previous research has found that individuals adjust their predictions in response to varying cost 

and reward structures, although not in an optimal manner (Mannes & Moore, 2013). As for time 

predictions, Burt and Kemp (1994) found that individuals tended to overestimate how long it 
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would take them to complete everyday tasks because overestimations help avoid the stress 

associated with not being able to complete the task by the predicted time. It is important to note 

that predictions can also be biased to be more risky as is often found in situations such as the 

planning fallacy (Kahneman & Tversky, 1982a), and in predictions of costs for public projects 

(Flyvbjerg et al., 2002), where optimistic predictions may provide the greatest immediate value 

for the decision maker. In the current study, participants were asked to make predictions about 

rover task durations that would be used to support task scheduling, thus a more pessimistic 

prediction may have been favored.  

The hypothesis of risk-averse predictions by those who deviated from the salient central 

tendency point is supported by their probability ratings. When asked the CDF value 

corresponding to their prediction, these participants indicated values greater than 50%. Thus, the 

participants were likely overestimating such that they considered their prediction to have a 

higher than 50% chance of being longer than the actual task duration. Instead of focusing on 

producing an “accurate” prediction (i.e., choosing a prediction to reduce the long-term error), 

participants may have confounded the prediction task with the possible consequences that may 

arise from the use of the prediction, even when the current experiment stressed the accuracy of 

predictions. 

It is also possible that the relatively simple structure of the task biased the participants towards 

adopting strategies that made use of all the information that they were presented rather than 

simply picking the salient central-tendency point. For example, with the Boxplot and Dotplot 

visualizations, the participants could have attempted to estimate the mean which was not 

saliently denoted. In fact, the post-experiment provided some evidence for this potential strategy, 

in particular for the Dotplot visualization. For the Median-only condition, the participants could 

have used the range of the x-axis (kept constant throughout the experiment) as an indicator of 

potential process variability. It is also possible that dispositional factors, such as numeracy 

ability or risk tolerance, of these participants resulted in the differing strategies. While 

participants were screened for their knowledge of statistics, there is likely large variability in 

how participants applied this knowledge to their prediction behavior. Future research should 

examine how these individual factors may impact prediction strategies in the presence of 

uncertainty information. It is also important to note that the study was conducted online, 

resulting in a less controlled environment for the participants. However, the use of the online 
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platform also allowed for a more diverse participant sample than those normally used in 

experimental studies (e.g., college students). 

One advantage of the visualizations that provided variability information was that participants 

were able to calibrate their confidence in their predictions based on the magnitude of the 

variability in the historical data; when there was more variability, the confidence ratings were 

lower. When confronted with uncertainty, individuals adopt a number of different strategies, 

including ignoring uncertainty, planning for worst-case scenarios, and gathering more 

information (Lipshitz & Strauss, 1997), and differences in confidence may change the strategy 

used to cope with uncertainty.  

Surprisingly, visualizations with variability information did not necessarily lead to higher 

confidence ratings compared to the Median-only visualization. This unexpected finding may be 

due to the Median-only visualization being always presented first, and participants readjusting 

their confidence when they could actually see the historical variability in the later trials. 

Furthermore, the Mean&SD visualization resulted in the highest confidence ratings of all the 

visualizations, which may be due to the bounds indicated by standard deviation appearing much 

shorter than those indicated by the range of historical data depicted in Boxplot and Dotplot 

visualizations, especially given that the range of the x-axis was kept constant throughout the 

experiment. In addition, previous research has shown that error bars are often misinterpreted 

(Correll & Gleicher, 2014); gradient plots (Correll & Gleicher, 2014) that make use of opacity as 

a visual indicator of uncertainty and other visualization methods, such as hypothetical outcome 

plots (Hullman, Resnick, & Adar, 2015), have been suggested as alternative methods to represent 

uncertainty. In addition, the four visualizations used in this study represent commonly-used 

methods for presenting historical data, however, the particular ways (i.e., the thickness of the 

standard deviation bars or the height of the Boxplot) they were represented in the experiment 

may have impacted prediction behavior. Thus, further research is needed to examine other design 

choices for the visualizations studied in this experiment and other types of uncertainty 

visualizations. 

6.5 Conclusion 

It was hypothesized that most participants would choose the saliently denoted central tendency 

point in the visualization as their predicted value and that regardless of the location of their 
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prediction (i.e., on the central tendency point or not), the participants would be choosing the mid-

point of their internal probability model as their prediction. When some participants chose the 

saliently denoted central tendency point as their prediction, it corresponded to the mid-point of 

their internal probability models. However, the majority of participants deviated from the 

central-tendency point and when they did they appeared to be choosing predictions that were 

more conservative than the mid-point.  

It was also hypothesized that increases in the amount of variability information provided in the 

visualization (based on display format) would not change participants’ prediction behavior but 

would change their confidence in their predictions. The increase in variability information did 

change prediction confidence as expected but it also changed prediction behavior.  

In conclusion, the major findings of this chapter were that the display format influences 

prediction behavior; more variability information leads to more deviations from the saliently 

presented central tendency point. However, even with no variability information, people do 

deviate from the point-estimate; e.g., by making conservative predictions suggesting that 

prediction behavior is also tied to factors outside of the information presented in the 

visualization. The presence of variability information, especially in the Boxplot and Dotplot 

visualizations, allowed participants to adjust their confidence in their predictions, which may 

have beneficial effects on subsequent decisions made using the predictions. 

The results of this study have implications for designers of decision support systems that support 

forecasting and predictions using historical data. Within the context of medical dispatch, the 

prediction of patient transfer times for different transport methods (i.e., air vs. ground transfer) is 

an important decision variable. In the past, these time predictions have largely relied on 

dispatcher experience and intuition, and the introduction of decision-aids to support this aspect of 

the dispatch task can help standardize and improve prediction outcomes. Providing variability 

information in addition to point-estimates can be useful when users have relevant-contextual 

information and can utilize this information to improve the prediction that is provided by a 

predictive-aid (e.g., inclement weather slowing patient transfer times). However, it appears that 

users are more likely to factor in contextual information that can also degrade prediction 

accuracy when they are presented with more variability information. The influence of contextual 
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information on prediction behavior with the use of historical data visualizations is examined with 

a second experimented presented in the following chapter. 
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Chapter 7  

7 Influence of Contextual Information on Time 
Prediction 

Field studies reported in Chapter 3 revealed that dispatch decisions are influenced by many 

contextual factors and two specific categories of contextual information that may influence 

transfer time predictions were identified. Consequence-information refers to factors that do not 

change the underlying process of the patient transfer but are associated with the cost or rewards 

for certain outcomes (e.g., if the transfer takes longer than 45 minutes then the crew will need to 

be paid overtime). Likelihood-information refers to factors that should change the underlying 

transfer process leading to different transfer times (e.g., snow results in slower than normal 

transfer times). As discussed in Chapter 5, the identified types of contextual information may 

play a role in how users make predictions of time using visualizations of historical data.  

Although the first experiment reported in Chapter 6 aimed to remove contextual information as 

much as possible, participants still appeared to have incorporated contextual information that 

changed their prediction strategies for rover time prediction; participants’ time prediction 

behavior was not solely dependent on finding the central tendency of the visualized data or the 

mid-point of their internal probability models. This chapter presents an exploratory study that 

examines whether and how the likelihood- and consequence-information changes time prediction 

behavior and strategies when individuals are provided with historical data visualizations. Three 

context information conditions were examined: No contextual information (no-context), 

consequence-information, and likelihood-information. Given that the focus of this experiment 

was context, a medical dispatch scenario was adopted in place of rover time prediction. The 

contribution of this chapter is preliminary evidence that prediction strategies differ based on the 

type of contextual information provided.  

7.1 Experimental Scenario and Visualizations Tested 

In contrast to the experiment in Chapter 6, the study presented in this chapter used the medical 

dispatch domain where participants were asked to take on the role of a medical dispatcher 

responsible for predicting patient transfer times. Participants were asked to predict the duration 

of a patient transfer using visualizations of historical patient transfer times. The experiment in 
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Chapter 6 showed that even in an unfamiliar scenario, such as rover time prediction, participants 

appeared to bring their own biases (i.e., risk-averse prediction behavior) to the experimental task, 

thus the patient transfer scenario was selected to increase the validity of the findings of this study 

in supporting the design of support tools for Ornge. Furthermore, the use of a patient transfer 

scenario allowed for the utilization of contextual information types reported in Chapter 3 that 

were identified from observations with Ornge medical dispatchers.  

The two of the four visualization conditions tested in Chapter 6 were adopted for the current 

study in order to reduce experimental complexity: a baseline Median-only visualization that had 

no uncertainty information, and a Boxplot visualization that showed variability information. The 

results of Chapter 6 showed that visualizations with uncertainty information, such as the Boxplot 

visualization, resulted in different prediction behavior than predictions made with only a point-

estimate (i.e., the Median-only visualization). The Boxplot visualization was selected because it 

provided both variability and skewness information and used the same measure of central 

tendency (i.e., the median) as the Median-only visualization.  

7.2 Methods  

7.2.1 Experiment Design 

The experiment used a 2x3x2 factorial design with visualization type (Median-only vs. Boxplot), 

context information (no-context, consequence-information, and likelihood-information), and the 

variability magnitude of the dataset (smaller vs. larger SD) as within-subjects factors (Table 3). 

Each participant was presented with six trials with the Median-only visualization first as a 

baseline before completing six trials with the Boxplot visualization, resulting in 12 trials per 

participant. Within each visualization condition, six trials corresponded to the six different 

combinations of the variability magnitude and context information conditions (3x2). The order of 

presentation of these six trials within each visualization condition was randomized. 
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Table 3: Experimental design for contextual information experiment 

Block 1: Trials 1-6 Block 2: Trials 7-12 

Median-

only 

Smaller SD 

Datasets 1-3 

No Context 

Boxplot 

Smaller SD  

Datasets 1-3 

No Context 

Consequence  Consequence  

Likelihood  Likelihood  

Larger SD 

Datasets 4-6 

No Context 

Larger SD 

Datasets 4-6 

No Context 

Consequence  Consequence  

Likelihood  Likelihood  

 

The participants were presented with a Median-only visualization or a Boxplot of patient transfer 

times, and were told that a given visualization was generated from relevant historical patient 

transfers. Overall, six unique datasets were created as the historical data for the six trials 

experienced by participants; these six datasets were repeated across the two visualization 

conditions. Half of the datasets had smaller SD and half had larger SD (Appendix F). The 

datasets were created from normal distributions, each consisting of 50 observations that were 

evenly spaced throughout the distribution (e.g., 1st, 3rd, 5th... 99th percentiles) to ensure that the 

datasets appeared normal and symmetric. Each observation was rounded to the nearest half 

minute. Smaller SD datasets came from distributions with SD of 2 minutes, the larger SD 

datasets came from distributions with SD of 5 minutes.  

Contextual information was manipulated by presenting a short excerpt above the visualization 

(Figure 21) and represented information that the user of the decision-aid would have about the 

situation that is not explicitly encoded in the system (i.e., the visualization). The excerpts used 

for each condition can be found in Table 4. The consequence-information described the situation 

(e.g., end of shift and patient condition), and a time threshold that demarked a change in the 

outcome of the transfer (e.g., 26 or 30 minutes). The thresholds were always one SD above the 

median of the historical data. The likelihood-information consisted of a description of the current 

situation that may impact the underlying process of the patient transfer (e.g., inexperienced team 

or traffic), along with an adjustment magnitude (e.g., 2 or 5 minutes slower than normal). These 

adjustment magnitudes were set to one SD of the underlying dataset and were always slower 

than the median (i.e., above the median). Thus, both types of context information referred to the 
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same time value (i.e., one SD above the median), but framed the information in different ways. 

Two different stories were created for each context condition to reduce the similarity between 

trials within a given visualization type; these two stories were however repeated across the two 

visualizations. How the stories were paired with the experimental conditions was 

counterbalanced as much as possible.  

 

 

Figure 21: Example of the prediction task with the Boxplot visualization, with the 

likelihood-information presented above the visualization of the historical data (highlighted 

with a red box for this figure). 
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Table 4: The story excerpts used for each context condition 

Context No-Context Consequence Likelihood 

Story 1 
“No additional 

information is known 

about the transfer.” 

“The paramedic crew is 

at the end of the shift, if 

the transfer takes longer 

than 26 minutes then they 

will reach the end of the 

shift and will need to be 

replaced by a new crew 

or paid overtime.” 

“The dispatch team is 

new and inexperienced, 

and based on your 

previous knowledge you 

know that they tend to 

complete this transfer 2 

minutes slower than most 

crews.” 

Story 2 
“No additional 

information is known 

about the transfer.” 

“Based on the medical 

status of the patient, if the 

transfer takes longer than 

30 minutes then there is a 

higher chance of loss of 

life or limb.” 

“There is bad traffic 

today and based on your 

previous knowledge you 

know this tends to delay 

the transfer by 5 minutes 

compared to regular 

transfers.” 

 

7.2.2 Participants 

Participants were recruited similarly to the first experiment, using a paid screening questionnaire 

on Amazon MTurk, which was open to all MTurk Workers in the United States and Canada with 

Masters Qualification. Participants were screened for having normal or corrected-to-normal 

vision and normal color perception through self-reports. In addition, the screening questionnaire 

provided definitions and examples of central tendency (i.e., mean, median, and mode) and 

dispersion (i.e., range, interquartile range, and standard deviation) concepts. Participants were 

tested on these concepts and had to score at least 75% to qualify for the study. Overall, 150 

participants answered this initial screening questionnaire, of which 123 qualified and were 

invited to participate in the study. The screening questionnaire took approximately 15 minutes 

and participants were compensated US$1.5 for filling out the screening questionnaire. 

Eighty participants completed the study, but the data from one participant was removed due to 

missing responses for one of the experimental tasks. The remaining 79 participants’ data were 

used for analysis (41 male, 38 female, mean age = 38.9 years, SD = 11.0). Participants scored an 

average of 92% (SD = 7%) on the screening questionnaire. Participants came from a variety of 
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educational backgrounds ranging from high school to graduate school, with the majority of 

participants (n = 56) having completed post-secondary education. 47 participants had taken at 

least one probability or statistics course at the post-secondary level and a further 12 had 

completed a probability or statistics course at the high school level. The experiment took 45 

minutes and participants were compensated US$8.5. The study was approved by the University 

of Toronto Research Ethics Board. Informed consent was obtained from each participant for both 

the screening questionnaire and the actual experiment. Relevant experimental materials can be 

found in Appendix F. 

7.2.3 Experimental Tasks 

Similar to the first experiment, participants were given a prediction task and a probability rating 

task. In the prediction task (Figure 21), participants were presented with a visualization, were 

asked to predict how long it would take for the patient transfer, and responded by dragging a 

selection bar with their selection restricted to half minute intervals. After providing their 

prediction, participants were also asked to rate their confidence in their choice on a scale 

between 1 and 100. In the probability rating task (Figure 22), participants were shown their 

predicted transfer time and were asked to estimate the probability that the actual patient transfer 

would be equal to or lower than their prediction. In other words, they were asked to estimate the 

corresponding cumulative distribution function (CDF) value, i.e., P (patient transfer time ≤ 

predicted patient transfer time).  



81 

 

 

Figure 22: Example of the probability rating task with the Boxplot visualization and 

consequence-information. 

 

7.2.4 Procedure 

Prior to the start of the experimental trials, participants were presented with the following 

introduction to the medical dispatch scenario.  

“You are taking the role of a medical dispatcher. Patients often require transfers 

between hospitals, and medical dispatchers organize these transfers by 

dispatching the best vehicle for completing the transfer. Estimates of the time 

required to transfer a patient are important to medical dispatchers. Estimates 

are used in comparing different transfer options (such as using a helicopter or 
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land ambulance) and are also provided to hospitals so they can prepare for the 

patient. This experiment focuses on how you generate time estimates. 

During the experiment, you will be asked to support a series of medical dispatch 

decisions by estimating how long you think it will take to transfer the patient. To 

help you with these estimates, you will be presented with historical data about 

how long it has taken to transfer patients in the past, along with information 

about the specific patient transfer that you are considering. Patient transfer 

times are dependent on many factors, and vary even for transfers between the 

same pair of hospitals. For example, traffic conditions, the crew assigned to the 

transfer, and the weather can impact the transfer time. For each patient, you 

will be presented with a graph that summarizes all of the historical transfer time 

data for transfers between the hospitals being considered… 

…On some occasions, you may also be provided additional information about 

the current patient transfer. For example, you may be told information about 

specific patient relevant deadlines or targets, or information about the current 

situation (e.g., weather or traffic conditions). It is important to remember that 

this information only applies to the patient transfer being considered, while the 

historical data is a summary of many different transfers for different patients.” 

 

Participants were also given training with the Median-only and Boxplot visualizations at the 

beginning of the experiment. The training described the various graphical features of each 

visualization and their relation to the historical data being presented. This introduction 

highlighted the saliently denoted central tendency measures (Figure 14) and provided further 

verbal descriptions of these measures. Participants were then required to demonstrate their 

understanding of the visualizations before continuing with the experiment. The participants then 

completed a practice session of two trials, one with the Median-only visualization with 

likelihood-information and the other with the Boxplot with consequence-information. After 

completing the experimental trials, participants filled out a questionnaire to help assess their 

prediction strategies. The questionnaire asked about predictions made under the Median-only and 

Boxplot visualizations in separate sections. First, participants were asked how much of an impact 

each type of context information had on their predictions, rated on a 5-point scale between 

Strongly Disagree and Strongly Agree. Participants were then asked whether their predictions 

were an optimistic, average, or pessimistic case for each context condition.  
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7.2.5 Dependent Variables and Statistical Analysis 

The prediction behavior was assessed using the same dependent variables as Chapter 6: 1) 

whether participants choose the saliently presented central tendency point as their prediction, 2) 

the direction of the prediction relative to this central tendency point, 3) the magnitude of the 

deviation of the prediction from this central tendency point, and 4) their confidence in their 

prediction.  

The analysis of the probability rating task was conducted differently than it was done for the first 

experiment. Within each of the three context conditions, the participants were categorized into 

different strategy groups (e.g., median picked as the prediction along with a 50% CDF value) 

based on the location of their prediction relative to the saliently presented central tendency point 

(i.e., median) and their probability rating. This categorization helped with the assessment of 

whether and how participants’ strategies changed with context information. Participants’ 

observed strategies were also analyzed with respect to what they indicated in their questionnaire 

responses (i.e., average, pessimistic, optimistic).  

Statistical models were built using the SAS MIXED procedure for mixed effects linear models 

and GENMOD procedure for logistic and ordered logit models. Unless otherwise specified, 

statistical models were built with contextual information, visualization type, magnitude of 

variability of the dataset, and their interactions as fixed factors. Participant, nested under the 

visualization type, variability magnitude, and context interaction, was used as a random factor in 

mixed effects models, with a compound symmetry variance-covariance structure. Generalized 

Estimating Equations were used in logit models to account for repeated measures. The 

significance of factors was tested using Type III Wald chi-square tests and models were selected 

using backwards selection with insignificant factors being dropped from subsequent models. 

Contrasts and estimated means were calculated using SAS’s estimate command. The analysis 

code and SAS outputs can be found in Appendix G. 

7.2.6 Hypotheses 

It was hypothesized that the contextual information changes participants’ prediction behaviors. 

When no-information is provided, participants would be more likely to rely on the presented data 

and would choose the central tendency of the visualization as their prediction. The first 
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experiment showed that participants tended to overestimate rover task durations potentially 

because they were considering consequences of underestimation although they were not 

explicitly provided any such context information. Based on these results, for the current 

experiment, it was hypothesized that in the presence of consequence-information, participants 

would adjust their predictions to avoid underestimating transfer time with probability ratings 

greater than 50%, demonstrating a potential bias. Finally, when presented with likelihood-

information, participants would center their internal models towards the suggested adjustment, 

resulting in changes in the predicted time but a reported probability rating that is near 50%. 

7.3 Results on Prediction Behavior 

7.3.1 Predictions on the Salient Central Tendency Point 

Overall, 72% of predictions made with no-context, 39% of predictions made with consequence-

information, and just 3% of predictions made using likelihood-information were on the saliently 

presented central tendency point of the visualizations (i.e., the median). A logistic regression 

analysis found that only the effect of context was significant, χ2(2)= 134.8, p<.0001. Thus, there 

was no evidence that the visualization type or the magnitude of the variability changed whether 

participants chose the saliently presented central tendency point as their prediction. Trials with 

no-context resulted in more predictions on the median than consequence-information (OR: 4.0, 

95% CI: 2.8, 5.7) and likelihood-information (OR: 96.7, 95% CI: 38.9, 240.4), and consequence-

information resulted in more predictions on the median than likelihood-information (OR: 24.2, 

95% CI: 9.6, 61.2), providing evidence that the presence of context information strongly 

influenced whether participants chose the saliently presented central tendency point as their 

predictions, and the three context information conditions differed in the magnitude of their 

effects. 

7.3.2 Direction of Predictions relative to the Salient Central Tendency Point 

For trials where the predictions deviated from the salient central tendency point, 72% of the 

predictions were above the saliently presented central tendency point, but it appears that this was 

mostly due to the likelihood-information condition (Figure 23). A logistic regression analysis 

revealed that only the main effects of context, χ2(2)= 43.4, p<.0001, and variability magnitude of 

the dataset, χ2(1)= 5.9, p=.02, were significant. As expected, the likelihood-information 



85 

 

condition, which indicated that the process is likely to be delayed due to traffic or a slow crew, 

resulted in more predictions above the median than both the no-context (OR: 8.0, 95% CI: 3.8, 

16.8) and the consequence-information (OR: 7.7, 95% CI: 4.1, 14.3) conditions. Contrary to the 

expectations, there were no differences between the consequence-information and the no-context 

conditions.  

 

 

Figure 23: Percentage of trials with predictions above the salient central tendency point as 

opposed to below  

7.3.3 Distance between Prediction and the Salient Central Tendency Point 

For predictions that were not on the salient central tendency point, the distance between the 

prediction and the salient central tendency point was divided into 4 levels with roughly equal 

numbers of observations: between 0.5 and 1 (n=193), between 1 and 2 (n=170), between 2 and 4 

(n=94), and greater than 4 (n=135) minutes; the binning was performed because the data were 

highly non-normal. Figure 24 shows the number of predictions within each category across the 

different variability magnitude and context conditions.  
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Figure 24: Number of predictions within each distance category for each level of variability 

magnitude and context information 

The adjustments away from the central tendency were found to vary based on the context 

information and variability magnitude; an ordered logistic regression model found that the 

interaction between context and variability magnitude was significant, χ2(2)=33.8, p<.0001, as 

were the main effects of context information, χ2(2)= 116.7, p<.0001, and variability magnitude 

of the dataset, χ2(1)= 43.5, p<.0001. Participants adjusted their predictions based on the 

variability magnitude, with trials with smaller SD resulting in predictions closer to the median 
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than trials with larger SD for the no-context (OR: 0.07, 95% CI: 0.01, 0.58), consequence-

information (OR: 0.33, 95% CI: 0.17, 0.66), and likelihood-information (OR: 0.03, 95% CI: 

0.02, 0.05) conditions. 

Differences were also found between the three context conditions. In trials with smaller SD, no-

context resulted in predictions closer to the median than consequence-information (OR: 0.03, 

95% CI: 0.004, 0.21) and likelihood-information (OR: 0.01, 95% CI: 0.001, 0.062); 

consequence-information also resulted in predictions closer to the median than likelihood-

information (OR: 0.32, 95% CI: 0.17, 0.60). Similar results were found for trials with larger SD: 

no-context resulted in predictions closer to the median than consequence-information (OR: 0.13, 

95% CI: 0.06, 0.32) and likelihood-information (OR: 0.003, 95% CI: 0.001, 0.003), and 

consequence-information resulted in predictions closer to the median than likelihood-information 

(OR: 0.03, 95% CI: 0.01, 0.06). 

7.3.4 Confidence in Predictions 

Participants’ confidence in their predictions appeared to differ between the visualization types 

and variability magnitudes. A linear mixed model fit to participants’ confidences in their 

prediction found that the main effects of visualization type (χ2(1)= 15.01, p=.0001 and variability 

magnitude (χ2(1)= 12.05, p=.0005), and their interaction were significant, χ2(1)= 8.37, p=.004.  

Participants reported having the lowest confidence in trials with larger SD datasets in the 

Boxplot condition compared to all other combinations of visualization type and variability 

magnitude (smaller SD-Boxplot: Δ= 5.4, 95% CI: 3.0, 7.7; smaller SD-Median-only: Δ = 6.2, 

95% CI: 3.9, 8.6; larger SD-Median-only: Δ = 5.7, 95% CI: 3.4, 8.1). Thus, uncertainty 

information helped individuals lower their confidence in the right situations (i.e., when the 

magnitude of the variability in the dataset was larger). However, participants appeared to have 

high confidence even without the presence of uncertainty information in the Median-only 

visualization condition. Interestingly, context information did not affect participants’ confidence 

in their predictions even though the context information was provided as an additional source of 

information about the current situation and participants’ actual predictions were strongly 

influenced by the context information. 
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7.3.5 Summary of Prediction Behavior Results 

Overall, it appears that the three types of contextual information had large and differing effects 

on participants’ prediction behavior. In the no-context condition, participants were much more 

likely to choose the saliently presented central tendency point. Consequence-information 

changed the prediction behavior, with fewer participants choosing the central tendency, but with 

a relatively even distribution of predictions above and below the salient central tendency point. 

This was in contrast with the original hypothesis that consequence-information would result in 

predictions above the median indicating a potential bias to avoid underestimation. As in line with 

the hypothesis, the likelihood-information appeared to strongly influence prediction behavior 

away from the central tendency point towards the time adjustment suggested by contextual 

information. The following section further explores the reasons for observed behaviors through 

an analysis of participants’ internal probability models. 

7.4 Results on Prediction Strategy 

7.4.1 Probability Rating and Prediction Location 

Figure 25 provides an overview of prediction strategies by presenting the location of 

participants’ predictions relative to the salient central tendency point (i.e., the median) and their 

probability ratings. Within each of the three context conditions, each participant was assigned to 

nine different strategy categories based on these two dimensions: location with respect to central 

tendency (below, on, above) x probability rating (below 50%, 50%, above 50%). For a context 

condition, participants were assigned into one of these nine categories which represented the 

majority of their predictions. The breakdown is presented in Table 5. When there was no 

majority, the participant was assigned to a tenth category (labeled “Other” in Table 5).  

Within the nine categories, four strategy groups are of particular interest: Strategy-1. Participants 

who chose the central tendency point and a probability rating of 50% likely utilized only the 

visualized historical data; Strategy-2. Participants who chose a value larger than the central 

tendency point with a probability rating larger than 50% likely adopted a pessimistic prediction 

strategy; Strategy-3. Participants who chose a value smaller than the central tendency point with 

a probability rating less than 50% likely adopted an optimistic prediction strategy; Strategy-4. 

Participants who did not pick the central tendency point but picked a probability rating of 50% 



89 

 

likely adjusted their internal probability models based on the contextual information and selected 

what they consider to be the central tendency for the given situation. This categorization helped 

with the assessment of whether and how participants’ strategies changed with context 

information. Participants’ observed strategies were also analyzed with respect to what they 

indicated in their questionnaire responses (i.e., whether their prediction was average, pessimistic, 

or optimistic). Our expectation was that the participants would tend to exhibit Strategy-2 in the 

consequence-information condition and Strategy-4 in the likelihood-information condition.  

 

Figure 25: Predictions made by participants assessed across two dimensions: their location 

relative to the salient central tendency point and the prediction probability. 

Table 5: Participant prediction strategies across the three context conditions. The strategy 

used by the plurality of participants is bolded. 

 No-context 

Other = 27 

Consequence 

Other = 45 

Likelihood 

Other = 27 

Prediction Location 

Below Median Above Below Median Above Below Median Above 

P
re

d
ic

ti
o

n
 

P
ro

b
a

b
il

it
y
 >50% 5 9 7 6 8 9 0 0 36 

50% 0 29 0 0 8 0 1 0 3 

<50% 0 2 0 2 1 0 0 0 12 

The results show the strong effect the three different context conditions had on prediction 

strategies. In the no-context condition, the most common prediction strategy used by participants 

was Strategy-1. For the consequence-information condition, the majority of the participants’ 

prediction strategies varied between trials and thus these participants were assigned to the 
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“Other” category. It appears that participants changed their prediction strategies based on the 

consequence-information in comparison to the no-context condition, but the manner in which 

each participant used the information varied across the sample; it’s possible that the varying 

stories used across trials may have introduced this variability. Finally, for likelihood-information 

condition, the participants tended adopt Stategy-2 in contrast to the expectations.  

After the trials, participants were asked whether their predictions were an optimistic, average, or 

pessimistic case for each context condition, and provided separate responses for the Median-only 

and Boxplot visualizations. The type of prediction (i.e., optimistic, average, or pessimistic) 

indicated by the majority of participants for each prediction strategy category is listed in Table 6 

(the percentages used to create Table 6 can be found in Table 11 in Appendix H).  

Table 6: The type of prediction indicated by the majority of participants within each 

strategy category: optimistic (Opt), average (Ave), or pessimistic (Pes). The type of 

prediction represents the majority for both visualizations unless otherwise noted. 

Categories with no participants are labelled with 0, while the number of participants within 

each other strategy category is presented in Table 5. 

 No-context 

Other = Ave 

Consequence 

Other = Opt 

Likelihood 

Other = Ave 

Prediction Location 

Below Median Above Below Median Above Below Median Above 

P
re

d
ic

ti
o
n

 

P
ro

b
a
b

il
it

y
 >50% * Ave Pes Opt Ave Pes 0 0 Pes 

50% 0 Ave 0 0 Ave 0 Ave 0 Ave 

<50% 0 Ave 0 Opt Ave 0 0 0 Ave 

* Median-only: Opt; Boxplot: Ave 

It appears that prediction strategies reported by the participants differed by context. In general, if 

participants were using their internal probability model to select their predicted values as was 

hypothesized in the framework proposed in Chapter 5, one would expect that predictions that had 

a probability rating less than 50% to be optimistic, those that were on 50% to be an average case, 

and those larger than 50% to be pessimistic. However, the data did not appear to support this 

hypothesis; instead, the self-reported prediction type (i.e., optimistic, average, or pessimistic) 

appeared to be related to the location of the predicted value relative to the median rather than the 

probability rating assigned to it. 
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It was hypothesized that in the presence of consequence-information, participants would adjust 

their predictions to avoid underestimating transfer time with probability ratings greater than 

50%. A probability rating greater than 50% would indicate a pessimistic prediction strategy as 

described in the paragraph above. In contrast to this hypotheses, many of the participants stated 

their predictions were optimistic in the consequence-information condition. However, this self-

description did not match the participants’ observed prediction behaviors reported in Section 

7.3.2.  

It was also hypothesized that when presented with likelihood-information, participants would 

center their internal models on the suggested adjustment, resulting in changes in the predicted 

time but a reported probability rating that is near 50%. Thus, participants were expected to self-

report to pick an average case for their predictions. For the likelihood-information condition, 

most participants did self-report that their predictions were an average case (35 out of 79).  

7.4.2 Self-reported Impact of Contextual Information on Prediction Behavior 

Participants were presented with two statements, one for consequence-information (i.e., “The 

additional information provided about the patient condition or shift requirements of the crew 

impacted my estimate.”), and one for likelihood-information (i.e., “The additional information 

provided about the traffic conditions or crew experience impacted my estimate.”). Participants 

rated how much they agreed with each of these statements on a 5-point scale between Strongly 

Disagree and Strongly Agree. Table 7 shows the number of participants who responded in each 

category. The results suggest that both types of contextual information were considered to have 

an impact on prediction behavior, but likelihood-information was found to be more impactful 

than consequence-information. In addition, the results of this questionnaire provided further 

evidence that there was no difference between the two visualization types in terms of prediction 

behavior. 
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Table 7: Number of participants who reported that they agreed with a statement that the 

additional information provided by the two context conditions impacted their time 

predictions 

 

 Strongly 

Disagree 

Disagree Neutral Agree Strongly 

Agree 

Total 

Consequence 
Median-only 2 6 6 35 30 79 

Boxplot 3 2 5 36 33 79 

Likelihood 
Median-only 0 0 0 27 52 79 

Boxplot 0 1 2 28 48 79 

 

7.5 Discussion 

The results of this study provide preliminary, but strong, evidence that contextual information is 

a factor that changes prediction behavior. Furthermore, the two framings of contextual 

information, consequence and likelihood, resulted in different types of prediction strategies. At a 

high level, these results suggest that when provided with decision support, in the form of 

visualizations of historical data, individuals are readily able to adjust their predictions based on 

information they have about the current situation, and the influence of this contextual 

information appears to be present both for visualizations that show variability information and 

those that do not.  

In the no-context condition, participants were much more likely to choose the saliently presented 

central tendency point as hypothesized. Consequence-information changed the prediction 

behavior, with fewer participants choosing the central tendency, but with a relatively even 

distribution of predictions above and below the salient central tendency point. This was in 

contrast with the original hypothesis formed based on the results of the first experiment: 

consequence-information would result in predictions above the median indicating a potential bias 

to avoid underestimation. However, the likelihood-information appeared to strongly influence 

prediction behavior away from the central tendency point towards the time adjustment suggested 

by contextual information as was hypothesized.  
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It was surprising that visualization type (i.e., one with variability information and one without) 

did not have an effect on prediction behavior; its effect was limited to helping participants 

calibrate their confidence. This was in contrast with the first study, which found differences 

between the visualizations. One potential explanation for this contrast is that some of the datasets 

used in the first study were slightly skewed (see Appendix F for datasets) whereas the datasets 

used in the second study were created to be perfectly symmetric. Thus, in the first study, the 

effects may not have been solely due to the presence of variability information but also due to 

graphical features of the visualization. Evidence supporting the interaction between dataset 

skewness and visualization type was found in a third experiment (presented in Appendix I) 

conducted exactly as the second experiment, but with right-skewed historical datasets. This third 

study was run with 79 additional participants. Predictions made using the Median-only 

visualization, where skewness information was not visible, largely replicated those found in the 

second experiment. However, in the Boxplot visualization condition, participants were more 

likely to choose predictions in the direction of the skewness and tended to choose predictions 

that were further away from the central tendency point. Furthermore, the influence of the skewed 

distribution appeared to be strongest for the no-context condition, and least strong for the 

likelihood-information condition where participants’ prediction behaviors appeared to be 

dominated by the context information provided. 

The results in the Boxplot visualization condition for right-skewed distributions provides 

evidence that graphical features of a visualization (e.g., the length of the whiskers and the area of 

the box) may have significant influence on prediction behavior. In the Boxplot visualization, the 

median was visually represented as a thick straight line in the middle of the boxplot, and 

participants were provided an explanation that the median represented the 50th percentile point of 

the dataset. However, with skewed distributions the median would not represent the graphical 

center of the Boxplot visualization, leading to participants potentially adjusting their predictions 

away from this saliently denoted central tendency measure. Boxplots can be difficult to interpret 

because the area represented within each quartile does not map onto probability density, and 

alternative boxplot visualizations have been suggested that remedy this shortcoming (e.g., 

Benjamini, 1988). The framework proposed by this dissertation hypothesized that individuals 

base their predictions on their internal probability models; however, the results of the third 

experiment suggest that participants may have been relying on simpler graphical heuristics such 
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as the length of the whiskers and boxes. Other visualization techniques that are better able to 

map graphical features to probability density, such as Violin plots (Hintze & Nelson, 1998) or 

quantile dot plots (Kay et al., 2016), may result in predictions that are more accurately tied to the 

underlying probability and should be examined in future work. 

The second experiment also provided some insights into prediction strategies; however, strategy 

analysis is not straight-forward and the results are thus not conclusive. For consequence-

information, there was greater variability in participants’ prediction behaviors and strategies than 

had been anticipated. One possible explanation for the variability in responses is that participants 

were using the information provided in the contextual information stories as a basis for a 

simulation of possible outcomes which they used to adjust their predictions from the median. 

Hence, some participants may have been able to extrapolate potential changes in the underlying 

process that would occur because of the changes in consequence. For example, in a post-

experiment feedback questionnaire, participants indicated that they felt that paramedic crews 

may attempt to rush the transfer for a critically-ill patient, or they may be slower in finishing a 

transfer when they were close to receiving overtime. The use of story building and mental 

simulation to assist in decision making and prediction is a common observation in Naturalistic 

Decision Making literature (Lipshitz, Klein, Orasanu, & Salas, 2001), and is likely less 

cognitively demanding then applying analytical methods for integrating the contextual 

information with the historical data. However, these simulations of possible outcomes are likely 

to be heavily influenced by the participants’ own understanding of the patient transfer process 

and which factors they consider salient, resulting in greater inter-individual variability. Further 

research on how individual differences influence the interpretation of consequence-information 

is required. 

In the likelihood-information condition, it was hypothesized that participants would adjust their 

internal models based on the likelihood-information in a way that shifted their internal 

probability models towards the time suggested by the contextual information. That is, 

participants would think that the adjustment would represent the central tendency of this specific 

case, in a way similar to how individual’s knowledge about underlying base-rates influences 

their interpretation of uncertainty indicators (Wallsten et al., 1986; Weber & Hilton, 1990). Some 

participants confirmed this hypothesis by choosing predictions greater than the median (as 

suggested by the likelihood information) and stating that their predictions represented an 
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“average” case (Median-only: 24 out of 79 participants; Boxplot: 19 out of 79). However, others’ 

behavior deviated from the hypothesis. Thus, it is possible that some participants adopted 

simpler heuristics for adjusting predictions instead of updating their internal probability models. 

The wording of the likelihood-information provided a simple recommendation (e.g., this dispatch 

team tends to complete the transfer 2 min slower than most crews) that the participants could act 

on. Since this information was provided as part of the experimental manipulation, participants 

may not have had any reason to doubt the validity of the information; the majority of the 

participants may have simply followed the suggestion without first interpreting the visualization 

and integrating the contextual information. Further research is required to examine whether the 

results will still hold when the likelihood-information is more uncertain (i.e., based on the 

individual’s own knowledge or information that they were provided through other sources).  

7.6 Conclusion 

In conclusion, this chapter showed that prediction behavior and strategies differ based on the 

type of contextual information and that users adjust their predictions when using historical data 

in response to contextual knowledge. Furthermore, the two different context types that were 

observed within Ornge influence predictions in different ways; but the reasons why these 

different contextual information change prediction behavior are still not well understood. Future 

studies should explore whether individuals are resorting to simple adjustment heuristics (i.e., 

anchor and adjust), and whether these heuristics are based on graphical features or based on 

mental simulation of what may occur in a given situation. Finally, the large variability in 

response strategies suggests that further interventions (e.g., training, interface and workflow 

changes) may be required to help users understand how to use historical data to predict transfer 

times, as it does not appear to be an intuitive process. For example, research has suggested that 

decision-aids may need to have explicit support and instructions for helping users integrate 

contextual information with the uncertainty information presented to them in a historical data 

visualization, as is supported by research on displaying meta-information in command and 

control interfaces (Pfautz et al., 2006). The next chapter provides an overall discussion of the 

experimental studies and relates them to field studies reported earlier.  
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Chapter 8  

8 Overall Discussion of Experimental Studies 

This chapter provides an overall discussion of the experimental studies described in Chapters 5 

through 7 and relates them to the field studies and STP tool described in Chapters 2 through 4. 

8.1 How do individuals use visualizations of historical data in 
making predictions? 

Decision-aids displaying historical data have the potential to benefit the prediction of patient 

transport times to help improve dispatch decision making if users are able to interpret and use the 

historical data effectively. Since little prior research has examined how users interpret 

visualizations of historical data to make predictions, a series of experimental studies examined 

whether the framework proposed in Chapter 5 described the way the participants chose a 

predicted value. The framework hypothesized that the predicted value would be influenced by 1) 

the display format of the historical data and 2) information that is external to the cognitive-aid 

that is relevant to the current context of the prediction. The following sections will describe the 

type of prediction behavior found in the empirical studies and discuss the possible underlying 

processes that may have led to the exhibited prediction behavior. 

8.1.1 What kind of prediction behavior do people exhibit when using 
visualizations of historical data? 

One of the major contributions from the two experimental studies was the finding that the 

prediction of future values using visualizations of historical data is not merely a matter of 

visualization interpretation. Previous studies, such as Ibrekk and Morgan (1987) and Edwards et 

al. (2012), largely focused on the ability of individuals to produce estimates of a specific 

measure of interest, such as the mean of the data. These studies demonstrated that displays that 

directly present the measure of interest result in the best performance. Furthermore, the little 

research available on future variable predictions using uncertainty visualizations (e.g., Nadav-

Greenberg & Joslyn, 2009) found that predicted values are not significantly different than the 

point-estimates provided in the display. Thus, it may be expected that when provided with a 

visualization displaying historical data, participants may simply choose the central tendency of 

the presented data as their prediction. In both of the empirical studies reported in this 
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dissertation, a measure of central tendency was saliently displayed and could be easily selected 

by participants using the interactive interfaces provided, allowing participants to easily adopt this 

strategy. 

However, the first experiment showed participants may have adjusted their predictions based on 

how the predictions would be used. That is, instead of choosing the saliently presented central 

tendency point, most participants overestimated the time, potentially to provide a safety margin. 

The role of context was explicitly tested in the second experiment. Participants adjusted their 

predictions toward the value suggested by the likelihood-information, while how participants 

adjusted their predictions when given consequence-information varied with no specific result. 

Taken together, the results indicate that the task of predicting future values using historical data 

visualizations, which is understudied, is conceptually different from a graph interpretation task 

(e.g., Ibrekk & Morgan, 1987). It appears that context can play a large role. One limitation of the 

empirical studies presented in this dissertation is that the structure of the task used always 

favored overestimations (i.e., the perceived costs of underestimating time for rover scheduling 

appeared to be greater than that of overestimating; the likelihood- and consequence-information 

both provided adjustment values that were slower than the median time). Future research should 

also manipulate contextual information favoring underestimations.   

The influence of contextual information on prediction behavior was found both when the 

visualization provided variability information and when it did not. While the visualizations 

explored in the two experiments represented varying amounts of uncertainty aggregation (i.e., 

changes in the amount of variability information), the results provided evidence that graphical 

features of the visualizations may have been the primary source of the different prediction 

behaviors observed rather than the amount of variability information provided. Further work is 

required to explore how different features affect prediction behavior; broader theories of how 

individuals interpret graphics such as the one by Pinker (1990) may be useful for this purpose. In 

general, previous reviews of risk communication techniques using visualizations (Lipkus & 

Hollands, 1999; Spiegelhalter, Pearson, & Short, 2011) have highlighted a lack of research 

connecting visualization design to the structure of the task being investigated. This dissertation 

helped narrow this gap through the investigation of one highly understudied task, the prediction 

of a future value of a variable.  
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It is interesting to note the contrast between the tendency of the participants in the first 

experiment to overestimate predicted times and the tendency of Ornge’s planners to 

underestimate the time to definitive care (compared to actual transport times) as was reported in 

Chapter 3. The underestimates by the planners at times were due to a lack of consideration for 

parts of the transfer process, whereas the task used in the experiment was much simpler. Other 

pre-hospital emergency care providers have also been found to make underestimations of transfer 

times (Propp & Rosenberg, 1991). In the experiments, participants were generating predictions 

supported by decision-aid presenting historical data, while Ornge’s dispatchers were generating 

their predictions largely based on their own experiences and simple heuristics (Giang, Donmez, 

Fatahi, et al., 2014). The more subjective, unsupported (i.e., without the aid of historical data) 

time prediction processes have been found to be prone to underestimations (Halkjelsvik & 

Jørgensen, 2012). Thus, the simplicity of the tasks used in the experiments is a limitation and can 

only uncover a small aspect of how actual planners’ predictions may be influenced by a decision-

aid. It is likely that with the historical data visualizations used in the experimental studies, the 

overestimations were a conscious choice by the participant, while the Ornge dispatchers may not 

have been aware of their bias towards underestimation, as previous studies have found that 

underestimations in the prediction of future time durations can be attributed to memory errors of 

how long events have taken in the past (Roy & Christenfeld, 2007; Roy, Mitten, & Christenfeld, 

2008).  

Furthermore, the participants in both experiments were able to correctly adjust their confidence 

in their predictions when the underlying datasets had larger variability and when historical 

variability information was presented. This result reaffirms previous studies on the benefits of 

uncertainty information on improving decision making (Joslyn & LeClerc, 2013; Nadav-

Greenberg & Joslyn, 2009; Savelli & Joslyn, 2013). These calibrations in confidence can lead to 

better informed decisions throughout the dispatch process. Thus, providing additional variability 

information not only can remind the dispatchers of travel intervals that are more susceptible to 

disruptions, it can also help them consider the reliability of their final predicted values. However, 

further validation in the application domain is still required. Future work with actual medical 

dispatchers is required to validate whether more accurate calibration of prediction confidence 

will lead to improvements in dispatch decision making. Furthermore, transport planners 

communicating their confidence in their predicted time to definitive care estimates to other 
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dispatch decision makers should be examined as a possible reason why historical variability 

information may lead to better dispatch decision making.  

8.1.2 How do people generate predictions when using visualizations of 
historical data? 

Chapter 5 proposed that individuals make predictions that are based on their understanding of the 

underlying distribution of the process represented in the historical data. That is, individuals 

interpret historical data visualizations to generate an internal probability model first (e.g., 

transport times); they then select a point within this internal distribution as their predicted value. 

While the results of the two experiments presented in this dissertation provide evidence that both 

display format and contextual information have statistically significant effects on prediction 

behavior, the results did not provide any clear support for the hypothesized prediction process, in 

particular, the generation of an internal model. 

The first experiment showed that participants deviated further from the central tendency when 

the magnitude of the variability presented to them was larger. This result provides evidence that 

participants chose a prediction that scaled with the underlying distribution of the process. 

However, it is unclear whether participants were actually generating an internal probability 

model, or whether they were simply using graphical cues from the visualizations to help them 

locate a desired point, as discussed earlier in Chapter 7. It is likely that interpreting the entire 

probability distribution before choosing a prediction is a time consuming and cognitively 

demanding task and would only be attempted when information about the entire distribution is 

needed. In the Tak et al. (2014, 2015) studies, participants’ internal models were queried 

explicitly which allowed the authors to test whether their participants were able to accurately 

interpret the probabilities represented by the visualization. However, if participants were only 

asked to produce a single piece of information, such as the predicted time in the studies 

presented in this dissertation, the use of simpler graphical heuristics may require less effort. The 

underlying processes that drove the changes observed with the different factors explored requires 

further investigation.  
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8.2 Recommendations for Ornge’s Short-term Planning Tool 

Based on the results of the experimental studies the following recommendations were also 

generated for the implementation of the STP tool for Ornge dispatchers. First, when dispatchers 

want to adjust their predictions away from the suggested historical central tendency, they should 

be asked to provide justification. This justification would serve as record keeping and also 

encourage the dispatcher to think about what contextual information justifies the adjustment. 

Second, dispatchers should be reminded to generate accurate time estimates rather than 

potentially building safety room into their predictions. The results of the dissertation provide 

evidence that non-dispatchers may consider contextual factors about how predictions are used in 

order to adjust their predictions when using decision-aids with historical data. However, Ornge’s 

dispatchers communicate their predictions to other dispatchers to support further dispatch 

decision making and having additional flex room may bias subsequent decision-makers. In 

addition to reminders and training to produce accurate predictions, the STP tool should use the 

algorithm outputs as default predictions, which may mitigate the bias towards including 

consequence context information in the predictions. Finally, dispatchers can communicate their 

confidence in their predictions in addition to their predictions.  
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Chapter 9  

9 Conclusion and Future Work 

In conclusion, this dissertation examined the following research questions: 

• Practical Research Questions: What is the role of patient transport time predictions in 

medical dispatch, and can information about the variability of historical transport times 

improve these predictions? 

• Theoretical Research Questions: How are commonly used historical data visualizations 

(e.g., boxplots) interpreted by individuals to support the prediction of future values of a 

variable, and what factors influence these predictions? 

In addition to statistical analysis of historical Ornge data, two field studies and two experimental 

studies were conducted. The findings suggest that:  

• Dispatchers make use of patient transport time predictions to support scheduling, 

logistics, and dispatch decisions, however dispatchers tend to underestimate transport 

times.  

• Dispatchers may benefit from having historical variability information to help gauge the 

reliability of a decision-aid. This conclusion is supported by the experimental evidence:  

individuals adjust their confidence in their time predictions based on the magnitude of the 

variability in the dataset shown. 

• Contextual factors (e.g., weather, patient severity) are considered by dispatchers when 

making dispatch decisions. Experiments also showed that contextual factors influence 

prediction behavior and that different types of contextual information observed in the 

field (i.e., those that change the likelihood of different outcomes, and those that change 

the consequence of different outcomes) affect prediction behavior in different ways. 

• The prediction of future values, using historical data, is influenced by the visualization 

used to present the historical data, but prediction behavior is not solely dependent on how 
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well individuals are able to interpret the visualization; contextual factors as discussed 

above influence the choice of a predicted value.  

• The various display formats used to present historical data change the type of information 

individuals have access to, which result in different types of prediction strategies.  

• Human dispatchers assisted with a decision-aid built using historical transport time data 

is a promising method to produce more accurate predictions. Although this dissertation 

does not explicitly test whether the proposed tool enhanced prediction accuracy, it 

provides support to this claim by the literature reviewed as well as the findings of the 

field and experimental studies.  

These findings were used in the design of a Short-term Planning tool to help Ornge’s dispatchers 

with generating transport time predictions. This tool is currently being adopted by Ornge.  

Limitations specific to the field and empirical studies have been listed in earlier chapters where 

these studies are discussed in detail. The below list reiterates some of the major ones of these 

limitations:  

• The field studies were conducted at a single large-scale air ambulance service in Canada, 

and further research is needed to examine whether the findings are generalizable to other 

medical transportation systems. 

• The use of a general population, recruited online, instead of trained dispatchers in the 

empirical studies limit the generalization of the empirical findings to the medical dispatch 

domain. Further research should examine the prediction behavior and strategies of 

Ornge’s dispatchers with the visualizations of historical data. 

• A highly controlled, artificial time prediction task was used in the empirical studies, 

rather than a dynamic, context-specific dispatch decision making task. Further work to 

extend the findings of this dissertation to more complex decision tasks using microworld 

simulations or other simulation studies can help address this limitation. 
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Suggestions for future work have been proposed in earlier chapters. The below list reiterates 

some of the major lines of research that can be pursued in the future building on the 

contributions of this dissertation:  

• The influence of the decision-aid proposed in this dissertation on team cognition can be 

investigated. The introduction of uncertainty information, using visualizations of 

historical data, may help improve communication and team decision-making.  

• Although this dissertation proposed that individual differences may play a role in how 

individuals use historical data visualizations, further research is needed to explore this 

hypothesis.  

• As noted earlier, the findings of the field and empirical studies were used in the design of 

a Short-term Planning tool to help Ornge’s dispatchers with generating transport time 

predictions. This tool is currently being adopted by Ornge. Future research should 

evaluate the effectiveness of this tool in operation.  

• Judgement analysis (Cooksey, 1996), and its extensions (e.g., Human-Auotmated Judge 

Learning (HAJL), Bass & Pritchett, 2008) can be adopted to provide further insight into 

the prediction behavior of dispatchers when using historical data decision-aids. In 

particular, HAJL may be useful to understand what visual cues within a visualization 

influence prediction behavior. 
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Appendix A – Consent Documents for Field Studies 

1. Contextual Inquiry Study 
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2. CDM Study 1 (Transport Planners) 
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3. CDM Study 2 (OMs and TMPs) 
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Appendix B – Dispatch Case Studies from Field Study 2 in 
Chapter 3 

Case 1 (Role – TMP): Level of care/Active Management case. 

A woman in a nursing station in northern Ontario who is reportedly to be in labour at 34 weeks. 

TMP is informed that it is her first natural birth and that she was leaking amniotic fluid. TMP 

sets the level of care at Advanced, which was the fastest crew available. Ornge paramedics arrive 

at nursing station, report to OCC that the patient was starting to have back pains and her cervix 

was dilating. TMP decides that the paramedics should stay at the nursing station for now and 

consults with pediatric TMP. Pediatric TMP suggests to the nursing station that they request a 

neonatal team from Winnipeg, which the nursing station does. TMP changes the level of care to 

critical, as a critical care crew was now available and is also dispatched to the nursing station. 

Critical care paramedic (CCP) crew arrives, followed closely by the neonatal team who 

concludes that the patient was not actually in active labour. Neonatal team transports patient to 

Winnipeg along with Ornge’s CCP medic. 

Major Decisions: 1) Initial level of care decision. 2) Decision to transport patient or stay at 

nursing station once ACP crew arrived. 3) Decision to send a CCP crew. 

Sources of Uncertainty: 1) Patient’s current condition. 2) Timeline for the patient’s delivery. 3) 

Care strategy for premature baby. 3) Whether the level of care currently allocated was sufficient 

once the case became more dynamic. 4) Operational timelines (e.g., neonatal team, Ornge’s 

crews). 

 Case 2 (Role – TMP): Patient Triage case. 

CCP crew aboard a helicopter was close to arriving at Pembroke for an emergent interfacility 

transfer of a patient who had ruptured her membrane (patient 1). Scene call came in for a young 

woman who was in respiratory distress near Algonquin park (patient 2). TMP triaged helicopter 

in favour of the scene call. Ten minutes after helicopter diverted towards Algonquin, second 

scene call came in for a possible trauma case north of Kingston (patient 3). TMP triaged in 

favour of first scene call until more information was available. Local EMS had picked up patient 

2, and helicopter met them on the highway. Paramedics were informed that there was a potential 

second case, and were told by local EMS that the hospital was 50 minutes away. The team 

(aircrew and paramedics), assessed the patient and felt that the patient was fit to travel by land 

EMS. TMP asked if everyone on the team was comfortable with the choice, and agreed with 

their assessment afterwards. Helicopter then departed for the scene call for patient 3, which was 

subsequently cancelled. 

Major Decisions: 1) Triage between patient 1 and 2. 2) Triage between patient 2 and 3. 3) 

Whether helicopter should leave patient 2 or patient 3. 

Sources of Uncertainty: 1) Patients' conditions (pt. 1, 2, and 3 to varying degrees of certainty). 
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Case 3 (Role – OM): Shift Change / Resource allocation example. 

OM coming on shift came in at 5am, got OCC and paramedic/pilot schedules, incident reports, 

summary report (i.e., weather and ongoing transfers) from previous OM, and e-mails about the 

day. Reports stated that there were two OCC staff who had booked the day off in the OCC and 

that two people were coming in at 10 am. OM decided that the OCC could manage short-staffed 

until 10am. External schedule stated that Kenora had two paramedics with 6-7 hour late starts 

due to massive OTs, London only had a single paramedic until noon (with pilots starting at 8am), 

and Timmins had medics who started at 12:10. OM asked Kenora to do a call-out (i.e., a request 

for a medic to come in off schedule), but no one responded; base manager filled in as a medic. 

OM also elected not to do a call-out for London (because it was a quiet morning) or Timmins 

(since the aircraft had dutied out in Sudbury the shift before). Prior to start of shift, OM 

debriefed his team about an event that had the RCMP controlling the airspace around Ottawa for 

the day. 

Major Decisions: 1) OCC staffing decision for the day. 2) Possible call-outs for Kenora, 

Timmins, and London. 

Sources of Uncertainty: 1) Call volume for the morning for each of the regions. 2) Ability for 

Ornge’s currently available resources to handle incoming calls (i.e., maintaining coverage). 

 Case 4 (Role – OM): Finding the most effective resource case. 

Call comes in from Attawapiskat at 0030 for the transfer of two psych patients who required 

Ontario Province Police (OPP) escort (2 escorts per patient) to Moose Factory both which are 

ACP. 793 (Moosonee) helicopter is required for the river hop (note: the Moose Factory hospital 

is on an island across the river from the Ornge base and patients require either a helicopter trip, a 

river hop, or a ferry to bring them to the hospital; due to the swollen river levels the ferry was not 

available as an option), but only has a Primary Care Paramedic (PCP) crew. 790 (Thunder bay 

fixed-wing) has an Advanced Care Paramedic (ACP) crew but cannot fit both OPP escorts. 

Planners/OM arrange for 790 to pick up OPP and then meet 793 in Attawapiskat, where the ACP 

paramedics will transfer onto 793 to transfer the patients. However, call was delayed until next 

shift due to declined weather checks and OPP not being available until 0800 in Timmins. Next 

OM starts shift at 0530, and asks a planner to check the availability of an Standing Arrangement 

(SA) carrier (3rd party medical air transfer services that perform fixed wing patient transfers on a 

fee-for-service basis) with ACP capabilities (Plan A). While waiting for SA carrier to respond, 

OM asks planner to plan a transfer where 796 (Timmins fixed-wing with an ACP crew) picks up 

OPP, and meets 793 in Moosonee where they will transfer ACP paramedics and OPP officers 

onto 793 to complete the transfers in Attawapiskat (Plan B), with 793 remaining in Moosonee 

with a temporary PCP crew. SA carrier responds that they have an ACP crew available at 1330, 

and OM asks TMP whether the patients can wait. The TMP says no, so the OM goes with Plan 

B. While transfers were being completed, a new emergent transfer (PCP) comes in between 

Hearst and Timmins. Planner (who was filling in during a break) assigned 796 (with the PCP 

crew) to the transfer. Once the original planner returns from break, they ask the OM whether 

another resource (790), which was just finishing up a call could be used instead. The OM agrees, 

and keeps 796 in Moosonee to await the completion of the Attawapiskat transfers. 
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Major Decisions: 1) Best way to get an ACP crew, the two OPP escorts, and a patient to Moose 

Factory. 2) Whether to use a SA carrier or two dedicated Ornge resources. 3) Whether to use 793 

or 796 for the Hearst transfer. 

Sources of Uncertainty: 1) Availability of ACP SA carrier resource. 2) The opportunity cost of 

using two dedicated Ornge resources versus the additional financial cost of the SA carrier. 3) The 

opportunity cost of taking 796 out of Moosonee for a transfer, while its original crew was tied up 

with the Attawapiskat transfer. 4) The future volume of transfers across the province (i.e., 

maintaining coverage). 
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Appendix C – Experimental Materials for Chapter 6 

 

Amazon Mechanical Turk HIT Description for Screening Questionnaire 
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Consent Form for Screening Questionnaire 



121 

 

Amazon Mechanical Turk HIT for Experiment 
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Consent Form for Experiment 
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Datasets used for experiment in Chapter 6 

 

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 

20 10 25 8 6 15 

21 11 27 12 8 21 

22 12 27 12 8 23 

23 12 28 13 9 23 

23 12 29 13 9 24 

23 13 29 14 10 25 

23 13 29 14 10 25 

24 13 29 14 11 26 

24 14 29 15 11 26 

24 14 29 15 11 26 

24 14 30 15 12 26 

24 14 30 17 12 27 

24 14 30 17 12 27 

25 14 30 17 13 27 

25 14 30 17 13 28 

25 14 30 17 13 29 

25 14 30 17 13 29 

25 14 30 18 13 29 

25 14 31 19 14 30 

25 15 31 19 14 30 

25 15 31 19 15 30 

25 15 31 19 15 31 

25 15 31 19 16 32 

25 15 31 19 16 32 

26 15 31 19 16 32 

26 15 31 19 17 32 

26 15 31 20 17 32 

26 16 31 20 18 32 

26 16 31 20 18 32 

26 16 31 20 19 33 

26 16 32 20 19 33 

26 16 32 22 19 34 

26 16 32 22 20 34 

27 16 32 22 21 34 

27 16 32 23 21 35 

27 16 32 23 21 35 

27 17 32 23 21 36 

27 17 32 23 21 36 

27 17 32 23 21 36 

28 17 33 23 22 37 

28 17 33 25 22 37 
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28 17 33 25 23 38 

28 17 33 25 24 38 

28 17 33 27 25 38 

29 18 34 27 25 38 

29 19 34 28 25 38 

29 19 34 28 27 40 

29 20 34 29 29 41 

30 20 34 30 31 42 

30 20 35 32 34 47 
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Appendix D – Statistical Models for Chapter 6 

Predictions on the Salient Central Tendency Point 

 
proc genmod data = Exp2.data descending; 

CLASS ParticipantID PartCond Var scenario_sd; 

model deviation = PartCond*Var*scenario_sd/ link = logit dist = binomial type3 wald; 

repeated subject = ParticipantID(PartCond);  

 

estimate 'Average Median-only' intercept 1 PartCond*Var*scenario_sd  0.166666667 0.166666667 0 0

 0.166666667 0.166666667 0 0 0.166666667 0.166666667 0 0 /exp; 

estimate 'Large SD: Average Median-only' intercept 1 PartCond*Var*scenario_sd 0.333333333 0 0 0

 0.333333333 0 0 0 0.333333333 0 0 0 /exp; 

estimate 'Large SD: Mean&SD' intercept 1 PartCond*Var*scenario_sd 0 0 0 0 0 0 0

 0 0 0 1 0 /exp; 

estimate 'Large SD: Boxplot' intercept 1 PartCond*Var*scenario_sd 0 0 0 0 0 0 1

 0 0 0 0 0 /exp; 

estimate 'Large SD: Dotplot' intercept 1 PartCond*Var*scenario_sd 0 0 1 0 0 0 0

 0 0 0 0 0 /exp; 

 

estimate 'Small SD: Average Median-only' intercept 1 PartCond*Var*scenario_sd 0 0.333333333 0 0 0

 0.333333333 0 0 0 0.333333333 0 0 /exp; 

estimate 'Small SD: Mean&SD' intercept 1 PartCond*Var*scenario_sd 0 0 0 0 0 0 0

 0 0 0 0 1 /exp; 

estimate 'Small SD: Boxplot' intercept 1 PartCond*Var*scenario_sd 0 0 0 0 0 0 0

 1 0 0 0 0 /exp; 

estimate 'Small SD: Dotplot' intercept 1 PartCond*Var*scenario_sd 0 0 0 1 0 0 0

 0 0 0 0 0 /exp; 

 

estimate 'Large vs. Small SD' PartCond*Var*scenario_sd 0.166666667 -0.166666667 0.166666667 -0.166666667 

0.166666667 -0.166666667 0.166666667 -0.166666667 0.166666667 -0.166666667 0.166666667 -0.166666667 /exp; 

 

estimate 'Dotplot vs Boxplot' PartCond*Var*scenario_sd 0 0 0.5 0.5 0 0 -0.5 -0.5

 0 0 0 0 /exp; 

estimate 'Dotplot vs Mean&SD' PartCond*Var*scenario_sd 0 0 0.5 0.5 0 0 0

 0 0 0 -0.5 -0.5 /exp; 

estimate 'Dotplot vs Median-only' PartCond*Var*scenario_sd -0.166666667 -0.166666667 0.5 0.5 -

0.166666667 -0.166666667 0 0 -0.166666667 -0.166666667 0 0 /exp; 

estimate 'Boxplot vs Mean&SD' PartCond*Var*scenario_sd 0 0 0 0 0 0 0.5

 0.5 0 0 -0.5 -0.5 /exp; 

estimate 'Boxplot vs Median-only' PartCond*Var*scenario_sd -0.166666667 -0.166666667 0 0 -

0.166666667 -0.166666667 0.5 0.5 -0.166666667 -0.166666667 0 0 /exp; 

estimate 'Mean&SD vs Median-only' PartCond*Var*scenario_sd  -0.166666667 -0.166666667 0 0

 -0.166666667 -0.166666667 0 0 -0.166666667 -0.166666667 0.5 0.5 /exp; 

 

estimate 'Dotplot: Large vs Small SD' PartCond*Var*scenario_sd 0 0 1 -1 0 0 0

 0 0 0 0 0 / exp; 

estimate 'Boxplot: Large vs Small SD' PartCond*Var*scenario_sd 0 0 0 0 0 0 1

 -1 0 0 0 0 / exp; 

estimate 'Mean&SD: Large vs Small SD' PartCond*Var*scenario_sd 0 0 0 0 0 0

 0 0 0 0 1 -1 /exp; 

estiamte 'Median : Large vs Small SD' PartCond*Var*scenario_sd 0.333333333 -0.333333333 0 0

 0.333333333 -0.333333333 0 0 0.333333333 -0.333333333 0 0 / exp; 

 

estimate 'Large SD: Dot vs Box' PartCond*Var*scenario_sd 0 0 1 0 0 0 -1

 0 0 0 0 0 / exp; 

estimate 'Large SD: Dot vs SD ' PartCond*Var*scenario_sd 0 0 1 0 0 0 0

 0 0 0 -1 0 / exp; 

estimate 'Large SD: Dot vs Med' PartCond*Var*scenario_sd -0.333333333 0 1 0 -0.333333333

 0 0 0 -0.333333333 0 0 0 /exp; 

estimate 'Large SD: Box vs SD ' PartCond*Var*scenario_sd 0 0 0 0 0 0 1

 0 0 0 -1 0 /exp; 
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estimate 'Large SD: Box vs Med' PartCond*Var*scenario_sd -0.333333333 0 0 0 -0.333333333

 0 1 0 -0.333333333 0 0 0 /exp; 

estimate 'Large SD: SD  vs Med' PartCond*Var*scenario_sd -0.333333333 0 0 0 -0.333333333

 0 0 0 -0.333333333 0 1 0 /exp; 

 

estimate 'Small SD: Dot vs Box' PartCond*Var*scenario_sd 0 0 0 1 0 0 0 -1

 0 0 0 0 / exp; 

estimate 'Small SD: Dot vs SD ' PartCond*Var*scenario_sd 0 0 0 1 0 0 0 0

 0 0 0 -1 / exp; 

estimate 'Small SD: Dot vs Med' PartCond*Var*scenario_sd 0 -0.333333333 0 1 0 -0.333333333

 0 0 0 -0.333333333 0 0 /exp; 

estimate 'Small SD: Box vs SD ' PartCond*Var*scenario_sd 0 0 0 0 0 0 0 1

 0 0 0 -1 /exp; 

estimate 'Small SD: Box vs Med' PartCond*Var*scenario_sd 0 -0.333333333 0 0 0 -0.333333333

 0 1 0 -0.333333333 0 0 /exp; 

estimate 'Small SD: SD  vs Med' PartCond*Var*scenario_sd 0 -0.333333333 0 0 0 -0.333333333

 0 0 0 -0.333333333 0 1 /exp; 

run; quit; 

 

Analysis Of GEE Parameter Estimates 

Empirical Standard Error Estimates 

Parameter 

  

Estimate 

Standard 

Error 

95% Confidence 

Limits Z Pr > |Z| 

Intercept       0.7691 0.4553 -0.1233 1.6616 1.69 0.0912 

PartCon*Var*scenario Dotplot FALSE 2 -0.9698 0.5881 -2.1225 0.1829 -1.65 0.0991 

PartCon*Var*scenario Dotplot FALSE 5 -0.7691 0.6097 -1.9642 0.4259 -1.26 0.2072 

PartCon*Var*scenario Dotplot TRUE 2 0.6172 0.5697 -0.4994 1.7337 1.08 0.2786 

PartCon*Var*scenario Dotplot TRUE 5 0.4205 0.6044 -0.7642 1.6051 0.70 0.4867 

PartCon*Var*scenario Boxplot FALSE 2 -0.3637 0.6141 -1.5672 0.8399 -0.59 0.5537 

PartCon*Var*scenario Boxplot FALSE 5 -0.1501 0.6535 -1.4310 1.1308 -0.23 0.8184 

PartCon*Var*scenario Boxplot TRUE 2 0.0782 0.5977 -1.0933 1.2496 0.13 0.8960 

PartCon*Var*scenario Boxplot TRUE 5 0.3295 0.6531 -0.9507 1.6096 0.50 0.6139 

PartCon*Var*scenario Standard_Deviation FALSE 2 -0.5685 0.2901 -1.1370 0.0001 -1.96 0.0500 

PartCon*Var*scenario Standard_Deviation FALSE 5 -0.5009 0.2530 -0.9968 -0.0049 -1.98 0.0478 

PartCon*Var*scenario Standard_Deviation TRUE 2 -0.3637 0.1747 -0.7061 -0.0212 -2.08 0.0374 

PartCon*Var*scenario Standard_Deviation TRUE 5 0.0000 0.0000 0.0000 0.0000 . . 
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Wald Statistics For Type 3 GEE Analysis 

Source DF Chi-Square Pr > ChiSq 

PartCon*Var*scenario 11 29.67 0.0018 

Contrast Estimate Results 

Label 

Mean 

Estimate 

Mean 

L'Beta 

Estimate 

Standard 

Error Alpha 

L'Beta 

Chi-

Square Pr > ChiSq 

Confidence 

Limits 

Confidence 

Limits 

Average 

Median-only 

0.5537 0.4380 0.6638 0.2155 0.2371 0.05 -0.2492 0.6802 0.83 0.3635 

Exp(Average 

Median-only) 

      1.2404 0.2941 0.05 0.7794 1.9742     

Large SD: 

Average 

Median-only 

0.5337 0.4179 0.6461 0.1352 0.2381 0.05 -0.3316 0.6019 0.32 0.5703 

Exp(Large SD: 

Average 

Median-only) 

      1.1447 0.2726 0.05 0.7178 1.8255     

Large SD: 

Mean&SD 

0.6000 0.3901 0.7786 0.4055 0.4348 0.05 -0.4467 1.2576 0.87 0.3511 

Exp(Large SD: 

Mean&SD) 

      1.5000 0.6522 0.05 0.6397 3.5171     

Large SD: 

Boxplot 

0.7000 0.5221 0.8329 0.8473 0.3872 0.05 0.0884 1.6062 4.79 0.0286 

Exp(Large SD: 

Boxplot) 

      2.3333 0.9034 0.05 1.0925 4.9837     

Large SD: 

Dotplot 

0.8000 0.6716 0.8867 1.3863 0.3423 0.05 0.7153 2.0572 16.40 <.0001 

Exp(Large SD: 

Dotplot) 

      4.0000 1.3693 0.05 2.0449 7.8244     

Small SD: 

Average 

Median-only 

0.5734 0.4499 0.6884 0.2958 0.2536 0.05 -0.2012 0.7927 1.36 0.2434 
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Contrast Estimate Results 

Label 

Mean 

Estimate 

Mean 

L'Beta 

Estimate 

Standard 

Error Alpha 

L'Beta 

Chi-

Square Pr > ChiSq 

Confidence 

Limits 

Confidence 

Limits 

Exp(Small SD: 

Average 

Median-only) 

      1.3442 0.3408 0.05 0.8177 2.2094     

Small SD: 

Mean&SD 

0.6833 0.4692 0.8405 0.7691 0.4553 0.05 -0.1233 1.6616 2.85 0.0912 

Exp(Small SD: 

Mean&SD) 

      2.1579 0.9826 0.05 0.8840 5.2677     

Small SD: 

Boxplot 

0.7500 0.5451 0.8825 1.0986 0.4683 0.05 0.1809 2.0164 5.50 0.0190 

Exp(Small SD: 

Boxplot) 

      3.0000 1.4048 0.05 1.1982 7.5110     

Small SD: 

Dotplot 

0.7667 0.6012 0.8775 1.1896 0.3975 0.05 0.4106 1.9686 8.96 0.0028 

Exp(Small SD: 

Dotplot) 

      3.2857 1.3060 0.05 1.5077 7.1607     

Large vs. Small 

SD 

0.4626 0.4145 0.5113 -0.1500 0.0997 0.05 -0.3454 0.0454 2.26 0.1324 

Exp(Large vs. 

Small SD) 

      0.8607 0.0858 0.05 0.7079 1.0464     

Dotplot vs 

Boxplot 

0.5781 0.3241 0.7966 0.3150 0.5358 0.05 -0.7351 1.3650 0.35 0.5566 

Exp(Dotplot vs 

Boxplot) 

      1.3702 0.7341 0.05 0.4795 3.9159     

Dotplot vs 

Mean&SD 

0.6683 0.4053 0.8563 0.7006 0.5531 0.05 -0.3834 1.7847 1.60 0.2053 

Exp(Dotplot vs 

Mean&SD) 

      2.0150 1.1145 0.05 0.6815 5.9579     

Dotplot vs 

Median-only 

0.7451 0.5790 0.8613 1.0725 0.3845 0.05 0.3188 1.8262 7.78 0.0053 
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Contrast Estimate Results 

Label 

Mean 

Estimate 

Mean 

L'Beta 

Estimate 

Standard 

Error Alpha 

L'Beta 

Chi-

Square Pr > ChiSq 

Confidence 

Limits 

Confidence 

Limits 

Exp(Dotplot vs 

Median-only) 

      2.9226 1.1239 0.05 1.3755 6.2101     

Boxplot vs 

Mean&SD 

0.5952 0.3113 0.8271 0.3857 0.6018 0.05 -0.7939 1.5652 0.41 0.5217 

Exp(Boxplot vs 

Mean&SD) 

      1.4706 0.8851 0.05 0.4521 4.7839     

Boxplot vs 

Median-only 

0.6808 0.5107 0.8134 0.7575 0.3646 0.05 0.0429 1.4721 4.32 0.0377 

Exp(Boxplot vs 

Median-only) 

      2.1329 0.7777 0.05 1.0438 4.3584     

Mean&SD vs 

Median-only 

0.5919 0.4104 0.7514 0.3718 0.3746 0.05 -0.3625 1.1061 0.99 0.3210 

Exp(Mean&SD 

vs Median-only) 

      1.4504 0.5434 0.05 0.6960 3.0226     

Dotplot: Large 

vs Small SD 

0.5490 0.4043 0.6859 0.1967 0.2980 0.05 -0.3875 0.7809 0.44 0.5093 

Exp(Dotplot: 

Large vs Small 

SD) 

      1.2174 0.3628 0.05 0.6788 2.1834     

Boxplot: Large 

vs Small SD 

0.4375 0.3325 0.5484 -0.2513 0.2274 0.05 -0.6970 0.1944 1.22 0.2691 

Exp(Boxplot: 

Large vs Small 

SD) 

      0.7778 0.1769 0.05 0.4981 1.2146     

Mean&SD: 

Large vs Small 

SD 

0.4101 0.3305 0.4947 -0.3637 0.1747 0.05 -0.7061 -0.0212 4.33 0.0374 

Exp(Mean&SD: 

Large vs Small 

SD) 

      0.6951 0.1214 0.05 0.4936 0.9790     

Median : Large 

vs Small SD 

0.4599 0.3972 0.5240 -0.1606 0.1309 0.05 -0.4172 0.0959 1.51 0.2198 
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Contrast Estimate Results 

Label 

Mean 

Estimate 

Mean 

L'Beta 

Estimate 

Standard 

Error Alpha 

L'Beta 

Chi-

Square Pr > ChiSq 

Confidence 

Limits 

Confidence 

Limits 

Exp(Median : 

Large vs Small 

SD) 

      0.8516 0.1115 0.05 0.6589 1.1007     

Large SD: Dot 

vs Box 

0.6316 0.3837 0.8252 0.5390 0.5168 0.05 -0.4739 1.5519 1.09 0.2970 

Exp(Large SD: 

Dot vs Box) 

      1.7143 0.8860 0.05 0.6225 4.7206     

Large SD: Dot 

vs SD 

0.7273 0.4741 0.8875 0.9808 0.5534 0.05 -0.1038 2.0654 3.14 0.0763 

Exp(Large SD: 

Dot vs SD ) 

      2.6667 1.4757 0.05 0.9014 7.8887     

Large SD: Dot 

vs Med 

0.7775 0.6265 0.8792 1.2511 0.3745 0.05 0.5172 1.9851 11.16 0.0008 

Exp(Large SD: 

Dot vs Med) 

      3.4943 1.3085 0.05 1.6774 7.2795     

Large SD: Box 

vs SD 

0.6087 0.3320 0.8296 0.4418 0.5822 0.05 -0.6993 1.5829 0.58 0.4479 

Exp(Large SD: 

Box vs SD ) 

      1.5556 0.9056 0.05 0.4970 4.8692     

Large SD: Box 

vs Med 

0.6709 0.5053 0.8027 0.7121 0.3526 0.05 0.0211 1.4032 4.08 0.0434 

Exp(Large SD: 

Box vs Med) 

      2.0384 0.7187 0.05 1.0213 4.0681     

Large SD: SD vs 

Med 

0.5672 0.3856 0.7323 0.2703 0.3755 0.05 -0.4656 1.0063 0.52 0.4716 

Exp(Large SD: 

SD vs Med) 

      1.3104 0.4920 0.05 0.6277 2.7353     

Small SD: Dot 

vs Box 

0.5227 0.2473 0.7850 0.0910 0.6142 0.05 -1.1128 1.2948 0.02 0.8823 
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Contrast Estimate Results 

Label 

Mean 

Estimate 

Mean 

L'Beta 

Estimate 

Standard 

Error Alpha 

L'Beta 

Chi-

Square Pr > ChiSq 

Confidence 

Limits 

Confidence 

Limits 

Exp(Small SD: 

Dot vs Box) 

      1.0952 0.6727 0.05 0.3286 3.6502     

Small SD: Dot 

vs SD 

0.6036 0.3177 0.8327 0.4205 0.6044 0.05 -0.7642 1.6051 0.48 0.4867 

Exp(Small SD: 

Dot vs SD ) 

      1.5226 0.9203 0.05 0.4657 4.9783     

Small SD: Dot 

vs Med 

0.7097 0.4968 0.8582 0.8938 0.4626 0.05 -0.0128 1.8005 3.73 0.0533 

Exp(Small SD: 

Dot vs Med) 

      2.4444 1.1308 0.05 0.9872 6.0525     

Small SD: Box 

vs SD 

0.5816 0.2788 0.8334 0.3295 0.6531 0.05 -0.9507 1.6096 0.25 0.6139 

Exp(Small SD: 

Box vs SD ) 

      1.3902 0.9080 0.05 0.3865 5.0009     

Small SD: Box 

vs Med 

0.6906 0.4989 0.8334 0.8028 0.4118 0.05 -0.0043 1.6100 3.80 0.0512 

Exp(Small SD: 

Box vs Med) 

      2.2319 0.9191 0.05 0.9957 5.0027     

Small SD: SD vs 

Med 

0.6162 0.4235 0.7782 0.4734 0.3988 0.05 -0.3083 1.2550 1.41 0.2353 

Exp(Small SD: 

SD vs Med) 

      1.6054 0.6403 0.05 0.7347 3.5080     

 

 

 

Direction of Predictions relative to Central Tendency Point 

 
proc genmod data = Exp2.dev descending; 

CLASS ParticipantID PartCond Var scenario_sd; 

model AboveCT = Var*PartCond*scenario_sd/ link = logit dist = binomial type3 wald; 

repeated subject = ParticipantID(PartCond);  

 

estimate 'Large vs. Small SD' PartCond*Var*scenario_sd 0.166666667 -0.166666667 0.166666667 -0.166666667 

0.166666667 -0.166666667 0.166666667 -0.166666667 0.166666667 -0.166666667 0.166666667 -0.166666667 /exp; 
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estimate 'Dotplot vs Boxplot' PartCond*Var*scenario_sd 0 0 0.5 0.5 0 0 -0.5 -0.5

 0 0 0 0 /exp; 

estimate 'Dotplot vs Mean&SD' PartCond*Var*scenario_sd 0 0 0.5 0.5 0 0 0

 0 0 0 -0.5 -0.5 /exp; 

estimate 'Dotplot vs Median-only' PartCond*Var*scenario_sd -0.166666667 -0.166666667 0.5 0.5 -

0.166666667 -0.166666667 0 0 -0.166666667 -0.166666667 0 0 /exp; 

estimate 'Boxplot vs Mean&SD' PartCond*Var*scenario_sd 0 0 0 0 0 0 0.5

 0.5 0 0 -0.5 -0.5 /exp; 

estimate 'Boxplot vs Median-only' PartCond*Var*scenario_sd -0.166666667 -0.166666667 0 0 -

0.166666667 -0.166666667 0.5 0.5 -0.166666667 -0.166666667 0 0 /exp; 

estimate 'Mean&SD vs Median-only' PartCond*Var*scenario_sd  -0.166666667 -0.166666667 0 0

 -0.166666667 -0.166666667 0 0 -0.166666667 -0.166666667 0.5 0.5 /exp; 

 

estimate 'Dotplot: Large vs Small SD' PartCond*Var*scenario_sd 0 0 1 -1 0 0 0

 0 0 0 0 0 / exp; 

estimate 'Boxplot: Large vs Small SD' PartCond*Var*scenario_sd 0 0 0 0 0 0 1

 -1 0 0 0 0 / exp; 

estimate 'Mean&SD: Large vs Small SD' PartCond*Var*scenario_sd 0 0 0 0 0 0

 0 0 0 0 1 -1 /exp; 

estiamte 'Median : Large vs Small SD' PartCond*Var*scenario_sd 0.333333333 -0.333333333 0 0

 0.333333333 -0.333333333 0 0 0.333333333 -0.333333333 0 0 / exp; 

 

estimate 'Large SD: Dot vs Box' PartCond*Var*scenario_sd 0 0 1 0 0 0 -1

 0 0 0 0 0 / exp; 

estimate 'Large SD: Dot vs SD ' PartCond*Var*scenario_sd 0 0 1 0 0 0 0

 0 0 0 -1 0 / exp; 

estimate 'Large SD: Dot vs Med' PartCond*Var*scenario_sd -0.333333333 0 1 0 -0.333333333

 0 0 0 -0.333333333 0 0 0 /exp; 

estimate 'Large SD: Box vs SD ' PartCond*Var*scenario_sd 0 0 0 0 0 0 1

 0 0 0 -1 0 /exp; 

estimate 'Large SD: Box vs Med' PartCond*Var*scenario_sd -0.333333333 0 0 0 -0.333333333

 0 1 0 -0.333333333 0 0 0 /exp; 

estimate 'Large SD: SD  vs Med' PartCond*Var*scenario_sd -0.333333333 0 0 0 -0.333333333

 0 0 0 -0.333333333 0 1 0 /exp; 

 

estimate 'Small SD: Dot vs Box' PartCond*Var*scenario_sd 0 0 0 1 0 0 0 -1

 0 0 0 0 / exp; 

estimate 'Small SD: Dot vs SD ' PartCond*Var*scenario_sd 0 0 0 1 0 0 0 0

 0 0 0 -1 / exp; 

estimate 'Small SD: Dot vs Med' PartCond*Var*scenario_sd 0 -0.333333333 0 1 0 -0.333333333

 0 0 0 -0.333333333 0 0 /exp; 

estimate 'Small SD: Box vs SD ' PartCond*Var*scenario_sd 0 0 0 0 0 0 0 1

 0 0 0 -1 /exp; 

estimate 'Small SD: Box vs Med' PartCond*Var*scenario_sd 0 -0.333333333 0 0 0 -0.333333333

 0 1 0 -0.333333333 0 0 /exp; 

estimate 'Small SD: SD  vs Med' PartCond*Var*scenario_sd 0 -0.333333333 0 0 0 -0.333333333

 0 0 0 -0.333333333 0 1 /exp; 

run; quit; 

 

Analysis Of GEE Parameter Estimates 

Empirical Standard Error Estimates 

Parameter 

  

Estimate 

Standard 

Error 

95% Confidence 

Limits Z Pr > |Z| 

Intercept       1.5805 0.3965 0.8033 2.3576 3.99 <.0001 

PartCon*Var*scenario Dotplot FALSE 2 -0.0988 0.5928 -1.2608 1.0631 -0.17 0.8676 
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Analysis Of GEE Parameter Estimates 

Empirical Standard Error Estimates 

Parameter 

  

Estimate 

Standard 

Error 

95% Confidence 

Limits Z Pr > |Z| 

PartCon*Var*scenario Dotplot FALSE 5 -0.5688 0.5647 -1.6757 0.5380 -1.01 0.3138 

PartCon*Var*scenario Dotplot TRUE 2 2.2697 1.0818 0.1493 4.3900 2.10 0.0359 

PartCon*Var*scenario Dotplot TRUE 5 -0.9518 0.4525 -1.8387 -0.0649 -2.10 0.0354 

PartCon*Var*scenario Boxplot FALSE 2 -0.4818 0.6270 -1.7108 0.7471 -0.77 0.4422 

PartCon*Var*scenario Boxplot FALSE 5 -0.5157 0.5545 -1.6026 0.5711 -0.93 0.3523 

PartCon*Var*scenario Boxplot TRUE 2 -0.8873 0.5041 -1.8754 0.1008 -1.76 0.0784 

PartCon*Var*scenario Boxplot TRUE 5 -0.4520 0.4645 -1.3623 0.4584 -0.97 0.3305 

PartCon*Var*scenario Standard_Deviation FALSE 2 -0.5996 0.2881 -1.1644 -0.0349 -2.08 0.0374 

PartCon*Var*scenario Standard_Deviation FALSE 5 -0.7050 0.4148 -1.5179 0.1080 -1.70 0.0892 

PartCon*Var*scenario Standard_Deviation TRUE 2 -0.8873 0.3266 -1.5275 -0.2471 -2.72 0.0066 

PartCon*Var*scenario Standard_Deviation TRUE 5 0.0000 0.0000 0.0000 0.0000 . . 

Wald Statistics For Type 3 GEE Analysis 

Source DF Chi-Square Pr > ChiSq 

PartCon*Var*scenario 11 29.30 0.0020 

Contrast Estimate Results 

Label 

Mean 

Estimat

e 

Mean 

L'Beta 

Estimat

e 

Standar

d 

Error 

Alph

a 

L'Beta 

Chi-

Squar

e 

Pr > ChiS

q 

Confidence 

Limits 

Confidence 

Limits 

Large vs. Small 

SD 

0.6030 0.492

9 

0.703

6 

0.4180 0.2278 0.05 -

0.0285 

0.8646 3.37 0.0665 

Exp(Large vs. 

Small SD) 

      1.5190 0.3461 0.05 0.9719 2.3740     
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Contrast Estimate Results 

Label 

Mean 

Estimat

e 

Mean 

L'Beta 

Estimat

e 

Standar

d 

Error 

Alph

a 

L'Beta 

Chi-

Squar

e 

Pr > ChiS

q 

Confidence 

Limits 

Confidence 

Limits 

Dotplot vs 

Boxplot 

0.7906 0.549

2 

0.921

3 

1.3286 0.5771 0.05 0.1975 2.4596 5.30 0.0213 

Exp(Dotplot vs 

Boxplot) 

      3.7756 2.1789 0.05 1.2183 11.7007     

Dotplot vs 

Mean&SD 

0.7507 0.454

1 

0.916

0 

1.1026 0.6565 0.05 -

0.1842 

2.3893 2.82 0.0931 

Exp(Dotplot vs 

Mean&SD) 

      3.0119 1.9774 0.05 0.8318 10.9061     

Dotplot vs 

Median-only 

0.7602 0.509

4 

0.906

4 

1.1539 0.5696 0.05 0.0375 2.2703 4.10 0.0428 

Exp(Dotplot vs 

Median-only) 

      3.1706 1.8059 0.05 1.0383 9.6821     

Boxplot vs 

Mean&SD 

0.4437 0.238

3 

0.670

4 

-0.2260 0.4776 0.05 -

1.1621 

0.7101 0.22 0.6361 

Exp(Boxplot vs 

Mean&SD) 

      0.7977 0.3810 0.05 0.3128 2.0343     

Boxplot vs 

Median-only 

0.4564 0.339

5 

0.578

4 

-0.1747 0.2505 0.05 -

0.6656 

0.3162 0.49 0.4856 

Exp(Boxplot vs 

Median-only) 

      0.8397 0.2103 0.05 0.5140 1.3719     

Mean&SD vs 

Median-only 

0.5128 0.342

3 

0.680

4 

0.0513 0.3593 0.05 -

0.6529 

0.7555 0.02 0.8864 

Exp(Mean&SD 

vs Median-

only) 

      1.0527 0.3782 0.05 0.5205 2.1288     

Dotplot: Large 

vs Small SD 

0.9616 0.770

9 

0.994

7 

3.2215 1.0244 0.05 1.2137 5.2294 9.89 0.0017 

Exp(Dotplot: 

Large vs Small 

SD) 

      25.0667 25.6795 0.05 3.3658 186.684

3 
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Contrast Estimate Results 

Label 

Mean 

Estimat

e 

Mean 

L'Beta 

Estimat

e 

Standar

d 

Error 

Alph

a 

L'Beta 

Chi-

Squar

e 

Pr > ChiS

q 

Confidence 

Limits 

Confidence 

Limits 

Boxplot: Large 

vs Small SD 

0.3929 0.294

0 

0.501

4 

-0.4353 0.2249 0.05 -

0.8762 

0.0056 3.75 0.0530 

Exp(Boxplot: 

Large vs Small 

SD) 

      0.6471 0.1455 0.05 0.4164 1.0056     

Mean&SD: 

Large vs Small 

SD 

0.2917 0.178

4 

0.438

5 

-0.8873 0.3266 0.05 -

1.5275 

-0.2471 7.38 0.0066 

Exp(Mean&SD

: Large vs 

Small SD) 

      0.4118 0.1345 0.05 0.2171 0.7811     

Median : Large 

vs Small SD 

0.5506 0.419

7 

0.674

8 

0.2031 0.2689 0.05 -

0.3240 

0.7302 0.57 0.4501 

Exp(Median : 

Large vs Small 

SD) 

      1.2252 0.3295 0.05 0.7232 2.0754     

Large SD: Dot 

vs Box 

0.9592 0.748

8 

0.994

6 

3.1570 1.0536 0.05 1.0920 5.2220 8.98 0.0027 

Exp(Large SD: 

Dot vs Box) 

      23.5000 24.7595 0.05 2.9802 185.306

8 

    

Large SD: Dot 

vs SD 

0.9592 0.726

8 

0.995

2 

3.1570 1.1115 0.05 0.9786 5.3354 8.07 0.0045 

Exp(Large SD: 

Dot vs SD ) 

      23.5000 26.1194 0.05 2.6607 207.561

6 

    

Large SD: Dot 

vs Med 

0.9348 0.647

0 

0.991

2 

2.6631 1.0497 0.05 0.6058 4.7205 6.44 0.0112 

Exp(Large SD: 

Dot vs Med) 

      14.3411 15.0537 0.05 1.8327 112.222

6 

    

Large SD: Box 

vs SD 

0.5000 0.248

4 

0.751

6 

-0.0000 0.5649 0.05 -

1.1073 

1.1073 0.00 1.0000 

Exp(Large SD: 

Box vs SD ) 

      1.0000 0.5649 0.05 0.3305 3.0261     
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Contrast Estimate Results 

Label 

Mean 

Estimat

e 

Mean 

L'Beta 

Estimat

e 

Standar

d 

Error 

Alph

a 

L'Beta 

Chi-

Squar

e 

Pr > ChiS

q 

Confidence 

Limits 

Confidence 

Limits 

Large SD: Box 

vs Med 

0.3790 0.249

1 

0.528

9 

-0.4939 0.3110 0.05 -

1.1035 

0.1157 2.52 0.1123 

Exp(Large SD: 

Box vs Med) 

      0.6103 0.1898 0.05 0.3317 1.1227     

Large SD: SD 

vs Med 

0.3790 0.197

3 

0.602

4 

-0.4939 0.4639 0.05 -

1.4031 

0.4153 1.13 0.2870 

Exp(Large SD: 

SD vs Med) 

      0.6103 0.2831 0.05 0.2458 1.5149     

Small SD: Dot 

vs Box 

0.3776 0.242

7 

0.534

5 

-0.4999 0.3256 0.05 -

1.1381 

0.1384 2.36 0.1248 

Exp(Small SD: 

Dot vs Box) 

      0.6066 0.1975 0.05 0.3204 1.1484     

Small SD: Dot 

vs SD 

0.2785 0.137

2 

0.483

8 

-0.9518 0.4525 0.05 -

1.8387 

-0.0649 4.42 0.0354 

Exp(Small SD: 

Dot vs SD ) 

      0.3860 0.1747 0.05 0.1590 0.9371     

Small SD: Dot 

vs Med 

0.4121 0.278

4 

0.560

1 

-0.3553 0.3046 0.05 -

0.9524 

0.2418 1.36 0.2435 

Exp(Small SD: 

Dot vs Med) 

      0.7010 0.2135 0.05 0.3858 1.2735     

Small SD: Box 

vs SD 

0.3889 0.203

9 

0.612

6 

-0.4520 0.4645 0.05 -

1.3623 

0.4584 0.95 0.3305 

Exp(Small SD: 

Box vs SD ) 

      0.6364 0.2956 0.05 0.2561 1.5815     

Small SD: Box 

vs Med 

0.5361 0.395

2 

0.671

4 

0.1445 0.2908 0.05 -

0.4254 

0.7145 0.25 0.6191 

Exp(Small SD: 

Box vs Med) 

      1.1555 0.3360 0.05 0.6535 2.0431     

Small SD: SD 

vs Med 

0.6449 0.458

6 

0.795

6 

0.5965 0.3891 0.05 -

0.1662 

1.3592 2.35 0.1253 
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Contrast Estimate Results 

Label 

Mean 

Estimat

e 

Mean 

L'Beta 

Estimat

e 

Standar

d 

Error 

Alph

a 

L'Beta 

Chi-

Squar

e 

Pr > ChiS

q 

Confidence 

Limits 

Confidence 

Limits 

Exp(Small SD: 

SD vs Med) 

      1.8158 0.7066 0.05 0.8469 3.8931     

 

Distance between Prediction and Central Tendency Point 

 
proc genmod data = Exp2.data_dev descending; 

CLASS ParticipantID PartCond Var scenario_sd; 

model Dev_Cut = Var*PartCond*scenario_sd/ link = clogit dist = mult type3 wald ; 

repeated subject = ParticipantID(PartCond);  

 

estimate 'Large vs. Small SD' PartCond*Var*scenario_sd 0.166666667 -0.166666667 0.166666667 -0.166666667 

0.166666667 -0.166666667 0.166666667 -0.166666667 0.166666667 -0.166666667 0.166666667 -0.166666667 /exp; 

 

estimate 'Dotplot vs Boxplot' PartCond*Var*scenario_sd 0 0 0.5 0.5 0 0 -0.5 -0.5

 0 0 0 0 /exp; 

estimate 'Dotplot vs Mean&SD' PartCond*Var*scenario_sd 0 0 0.5 0.5 0 0 0

 0 0 0 -0.5 -0.5 /exp; 

estimate 'Dotplot vs Median-only' PartCond*Var*scenario_sd -0.166666667 -0.166666667 0.5 0.5 -

0.166666667 -0.166666667 0 0 -0.166666667 -0.166666667 0 0 /exp; 

estimate 'Boxplot vs Mean&SD' PartCond*Var*scenario_sd 0 0 0 0 0 0 0.5

 0.5 0 0 -0.5 -0.5 /exp; 

estimate 'Boxplot vs Median-only' PartCond*Var*scenario_sd -0.166666667 -0.166666667 0 0 -

0.166666667 -0.166666667 0.5 0.5 -0.166666667 -0.166666667 0 0 /exp; 

estimate 'Mean&SD vs Median-only' PartCond*Var*scenario_sd  -0.166666667 -0.166666667 0 0

 -0.166666667 -0.166666667 0 0 -0.166666667 -0.166666667 0.5 0.5 /exp; 

 

estimate 'Dotplot: Large vs Small SD' PartCond*Var*scenario_sd 0 0 1 -1 0 0 0

 0 0 0 0 0 / exp; 

estimate 'Boxplot: Large vs Small SD' PartCond*Var*scenario_sd 0 0 0 0 0 0 1

 -1 0 0 0 0 / exp; 

estimate 'Mean&SD: Large vs Small SD' PartCond*Var*scenario_sd 0 0 0 0 0 0

 0 0 0 0 1 -1 /exp; 

estiamte 'Median : Large vs Small SD' PartCond*Var*scenario_sd 0.333333333 -0.333333333 0 0

 0.333333333 -0.333333333 0 0 0.333333333 -0.333333333 0 0 / exp; 

 

estimate 'Large SD: Dot vs Box' PartCond*Var*scenario_sd 0 0 1 0 0 0 -1

 0 0 0 0 0 / exp; 

estimate 'Large SD: Dot vs SD ' PartCond*Var*scenario_sd 0 0 1 0 0 0 0

 0 0 0 -1 0 / exp; 

estimate 'Large SD: Dot vs Med' PartCond*Var*scenario_sd -0.333333333 0 1 0 -0.333333333

 0 0 0 -0.333333333 0 0 0 /exp; 

estimate 'Large SD: Box vs SD ' PartCond*Var*scenario_sd 0 0 0 0 0 0 1

 0 0 0 -1 0 /exp; 

estimate 'Large SD: Box vs Med' PartCond*Var*scenario_sd -0.333333333 0 0 0 -0.333333333

 0 1 0 -0.333333333 0 0 0 /exp; 

estimate 'Large SD: SD  vs Med' PartCond*Var*scenario_sd -0.333333333 0 0 0 -0.333333333

 0 0 0 -0.333333333 0 1 0 /exp; 

 

estimate 'Small SD: Dot vs Box' PartCond*Var*scenario_sd 0 0 0 1 0 0 0 -1

 0 0 0 0 / exp; 

estimate 'Small SD: Dot vs SD ' PartCond*Var*scenario_sd 0 0 0 1 0 0 0 0

 0 0 0 -1 / exp; 
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estimate 'Small SD: Dot vs Med' PartCond*Var*scenario_sd 0 -0.333333333 0 1 0 -0.333333333

 0 0 0 -0.333333333 0 0 /exp; 

estimate 'Small SD: Box vs SD ' PartCond*Var*scenario_sd 0 0 0 0 0 0 0 1

 0 0 0 -1 /exp; 

estimate 'Small SD: Box vs Med' PartCond*Var*scenario_sd 0 -0.333333333 0 0 0 -0.333333333

 0 1 0 -0.333333333 0 0 /exp; 

estimate 'Small SD: SD  vs Med' PartCond*Var*scenario_sd 0 -0.333333333 0 0 0 -0.333333333

 0 0 0 -0.333333333 0 1 /exp; 

run; quit; 

 

Analysis Of GEE Parameter Estimates 

Empirical Standard Error Estimates 

Parameter 

  

Estimat

e 

Standar

d 

Error 

95% 

Confidence 

Limits Z 

Pr > |Z

| 

Intercept1       -1.8127 0.4817 -

2.7568 

-

0.8685 

-

3.76 

0.0002 

Intercept2       -0.8965 0.4484 -

1.7754 

-

0.0176 

-

2.00 

0.0456 

Intercept3       0.3040 0.4161 -

0.5116 

1.1195 0.73 0.4651 

PartCon*Var*scenari

o 

Dotplot FALS

E 

large_5 1.3913 0.6024 0.2106 2.5720 2.31 0.0209 

PartCon*Var*scenari

o 

Dotplot FALS

E 

small_

2 

1.9038 0.7162 0.5001 3.3075 2.66 0.0079 

PartCon*Var*scenari

o 

Dotplot TRUE large_5 0.7253 0.5352 -

0.3237 

1.7744 1.36 0.1754 

PartCon*Var*scenari

o 

Dotplot TRUE small_

2 

-0.2545 0.5139 -

1.2618 

0.7527 -

0.50 

0.6204 

PartCon*Var*scenari

o 

Boxplot FALS

E 

large_5 0.6609 0.5862 -

0.4880 

1.8098 1.13 0.2595 

PartCon*Var*scenari

o 

Boxplot FALS

E 

small_

2 

0.9019 0.5740 -

0.2231 

2.0270 1.57 0.1161 

PartCon*Var*scenari

o 

Boxplot TRUE large_5 1.0672 0.5717 -

0.0533 

2.1878 1.87 0.0619 

PartCon*Var*scenari

o 

Boxplot TRUE small_

2 

-0.4569 0.5779 -

1.5896 

0.6757 -

0.79 

0.4291 

PartCon*Var*scenari

o 

Standard_Deviatio

n 

FALS

E 

large_5 0.3098 0.3088 -

0.2955 

0.9151 1.00 0.3158 
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Analysis Of GEE Parameter Estimates 

Empirical Standard Error Estimates 

Parameter 

  

Estimat

e 

Standar

d 

Error 

95% 

Confidence 

Limits Z 

Pr > |Z

| 

PartCon*Var*scenari

o 

Standard_Deviatio

n 

FALS

E 

small_

2 

0.0139 0.4320 -

0.8327 

0.8605 0.03 0.9743 

PartCon*Var*scenari

o 

Standard_Deviatio

n 

TRUE large_5 1.5642 0.4092 0.7622 2.3661 3.82 0.0001 

PartCon*Var*scenari

o 

Standard_Deviatio

n 

TRUE small_

2 

0.0000 0.0000 0.0000 0.0000 . . 

Wald Statistics For Type 3 GEE Analysis 

Source DF Chi-Square Pr > ChiSq 

PartCon*Var*scenario 11 101.22 <.0001 

Contrast Estimate Results 

Label 

Mean 

Estimate 

Mean 

L'Beta 

Estimate 

Standard 

Error Alpha 

L'Beta 

Chi-

Square Pr > ChiSq 

Confidence 

Limits 

Confidence 

Limits 

Large vs. Small 

SD 

0.6461 0.5877 0.7004 0.6018 0.1262 0.05 0.3544 0.8491 22.74 <.0001 

Exp(Large vs. 

Small SD) 

      1.8253 0.2303 0.05 1.4254 2.3375     

Dotplot vs 

Boxplot 

0.4826 0.2758 0.6955 -0.0697 0.4569 0.05 -0.9653 0.8258 0.02 0.8787 

Exp(Dotplot vs 

Boxplot) 

      0.9326 0.4261 0.05 0.3809 2.2837     

Dotplot vs 

Mean&SD 

0.3666 0.1928 0.5838 -0.5467 0.4515 0.05 -1.4317 0.3383 1.47 0.2260 

Exp(Dotplot vs 

Mean&SD) 

      0.5789 0.2614 0.05 0.2389 1.4025     

Dotplot vs 

Median-only 

0.3479 0.2052 0.5245 -0.6282 0.3705 0.05 -1.3544 0.0979 2.88 0.0900 
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Contrast Estimate Results 

Label 

Mean 

Estimate 

Mean 

L'Beta 

Estimate 

Standard 

Error Alpha 

L'Beta 

Chi-

Square Pr > ChiSq 

Confidence 

Limits 

Confidence 

Limits 

Exp(Dotplot vs 

Median-only) 

      0.5335 0.1977 0.05 0.2581 1.1029     

Boxplot vs 

Mean&SD 

0.3830 0.1917 0.6189 -0.4770 0.4907 0.05 -1.4387 0.4848 0.94 0.3311 

Exp(Boxplot vs 

Mean&SD) 

      0.6207 0.3046 0.05 0.2372 1.6239     

Boxplot vs 

Median-only 

0.3639 0.2258 0.5287 -0.5585 0.3436 0.05 -1.2319 0.1150 2.64 0.1041 

Exp(Boxplot vs 

Median-only) 

      0.5721 0.1966 0.05 0.2917 1.1218     

Mean&SD vs 

Median-only 

0.4796 0.3226 0.6408 -0.0815 0.3370 0.05 -0.7420 0.5789 0.06 0.8088 

Exp(Mean&SD 

vs Median-only) 

      0.9217 0.3106 0.05 0.4762 1.7841     

Dotplot: Large 

vs Small SD 

0.7271 0.6604 0.7850 0.9799 0.1607 0.05 0.6649 1.2948 37.18 <.0001 

Exp(Dotplot: 

Large vs Small 

SD) 

      2.6641 0.4281 0.05 1.9443 3.6503     

Boxplot: Large 

vs Small SD 

0.8212 0.7248 0.8890 1.5242 0.2836 0.05 0.9683 2.0801 28.88 <.0001 

Exp(Boxplot: 

Large vs Small 

SD) 

      4.5913 1.3023 0.05 2.6334 8.0051     

Mean&SD: 

Large vs Small 

SD 

0.8270 0.6818 0.9142 1.5642 0.4092 0.05 0.7622 2.3661 14.61 0.0001 

Exp(Mean&SD: 

Large vs Small 

SD) 

      4.7788 1.9553 0.05 2.1430 10.6563     

Median : Large 

vs Small SD 

0.4619 0.3579 0.5694 -0.1526 0.2204 0.05 -0.5846 0.2795 0.48 0.4889 
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Contrast Estimate Results 

Label 

Mean 

Estimate 

Mean 

L'Beta 

Estimate 

Standard 

Error Alpha 

L'Beta 

Chi-

Square Pr > ChiSq 

Confidence 

Limits 

Confidence 

Limits 

Exp(Median : 

Large vs Small 

SD) 

      0.8585 0.1893 0.05 0.5573 1.3225     

Large SD: Dot 

vs Box 

0.4153 0.2184 0.6436 -0.3419 0.4760 0.05 -1.2748 0.5910 0.52 0.4726 

Exp(Large SD: 

Dot vs Box) 

      0.7104 0.3381 0.05 0.2795 1.8058     

Large SD: Dot 

vs SD 

0.3018 0.1439 0.5263 -0.8389 0.4818 0.05 -1.7832 0.1055 3.03 0.0817 

Exp(Large SD: 

Dot vs SD ) 

      0.4322 0.2082 0.05 0.1681 1.1113     

Large SD: Dot 

vs Med 

0.4845 0.3012 0.6721 -0.0620 0.3978 0.05 -0.8417 0.7177 0.02 0.8761 

Exp(Large SD: 

Dot vs Med) 

      0.9399 0.3739 0.05 0.4310 2.0497     

Large SD: Box 

vs SD 

0.3783 0.1835 0.6222 -0.4970 0.5081 0.05 -1.4928 0.4989 0.96 0.3280 

Exp(Large SD: 

Box vs SD ) 

      0.6084 0.3091 0.05 0.2247 1.6468     

Large SD: Box 

vs Med 

0.5695 0.3870 0.7349 0.2799 0.3774 0.05 -0.4598 1.0196 0.55 0.4583 

Exp(Large SD: 

Box vs Med) 

      1.3230 0.4993 0.05 0.6314 2.7721     

Large SD: SD 

vs Med 

0.6850 0.5189 0.8143 0.7768 0.3577 0.05 0.0758 1.4779 4.72 0.0299 

Exp(Large SD: 

SD vs Med) 

      2.1746 0.7778 0.05 1.0788 4.3836     

Small SD: Dot 

vs Box 

0.5504 0.3205 0.7606 0.2024 0.4866 0.05 -0.7513 1.1561 0.17 0.6774 
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Contrast Estimate Results 

Label 

Mean 

Estimate 

Mean 

L'Beta 

Estimate 

Standard 

Error Alpha 

L'Beta 

Chi-

Square Pr > ChiSq 

Confidence 

Limits 

Confidence 

Limits 

Exp(Small SD: 

Dot vs Box) 

      1.2243 0.5958 0.05 0.4717 3.1777     

Small SD: Dot 

vs SD 

0.4367 0.2207 0.6798 -0.2545 0.5139 0.05 -1.2618 0.7527 0.25 0.6204 

Exp(Small SD: 

Dot vs SD ) 

      0.7753 0.3984 0.05 0.2832 2.1227     

Small SD: Dot 

vs Med 

0.2325 0.1219 0.3978 -1.1944 0.3979 0.05 -1.9743 -0.4145 9.01 0.0027 

Exp(Small SD: 

Dot vs Med) 

      0.3029 0.1205 0.05 0.1389 0.6607     

Small SD: Box 

vs SD 

0.3877 0.1694 0.6628 -0.4569 0.5779 0.05 -1.5896 0.6757 0.63 0.4291 

Exp(Small SD: 

Box vs SD ) 

      0.6332 0.3659 0.05 0.2040 1.9653     

Small SD: Box 

vs Med 

0.1983 0.1002 0.3547 -1.3968 0.4073 0.05 -2.1952 -0.5985 11.76 0.0006 

Exp(Small SD: 

Box vs Med) 

      0.2474 0.1008 0.05 0.1113 0.5496     

Small SD: SD vs 

Med 

0.2809 0.1331 0.4986 -0.9399 0.4767 0.05 -1.8741 -0.0056 3.89 0.0486 

Exp(Small SD: 

SD vs Med) 

      0.3907 0.1862 0.05 0.1535 0.9944     

 

 

Confidence in Predictions 
 

proc mixed data = Exp2.data; 

CLASS ParticipantID PartCond Var scenario_sd; 

model EstimateConf = Var*PartCond*scenario_sd / residual ddfm=satterth solution; 

random ParticipantID(PartCond); 

 

estimate 'Large SD: Average Median-only' intercept 1 PartCond*Var*scenario_sd 0.333333333 0 0 0

 0.333333333 0 0 0 0.333333333 0 0 0 /cl; 

estimate 'Large SD: Boxplot' intercept 1 PartCond*Var*scenario_sd 0 0 0 0 0 0 1

 0 0 0 0 0 /cl; 
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estimate 'Large SD: Dotplot' intercept 1 PartCond*Var*scenario_sd 0 0 1 0 0 0 0

 0 0 0 0 0 /cl; 

estimate 'Large SD: Mean&SD' intercept 1 PartCond*Var*scenario_sd 0 0 0 0 0 0 0

 0 0 0 1 0 /cl; 

 

estimate 'Small SD: Average Median-only' intercept 1 PartCond*Var*scenario_sd 0 0.333333333 0 0 0

 0.333333333 0 0 0 0.333333333 0 0 /cl; 

estimate 'Small SD: Boxplot' intercept 1 PartCond*Var*scenario_sd 0 0 0 0 0 0 0

 1 0 0 0 0 /cl; 

estimate 'Small SD: Dotplot' intercept 1 PartCond*Var*scenario_sd 0 0 0 1 0 0 0

 0 0 0 0 0 /cl; 

estimate 'Small SD: Mean&SD' intercept 1 PartCond*Var*scenario_sd 0 0 0 0 0 0 0

 0 0 0 0 1 /cl; 

 

estimate 'Large vs. Small SD' PartCond*Var*scenario_sd 0.166666667 -0.166666667 0.166666667 -0.166666667 

0.166666667 -0.166666667 0.166666667 -0.166666667 0.166666667 -0.166666667 0.166666667 -0.166666667 /cl; 

 

estimate 'Dotplot vs Boxplot' PartCond*Var*scenario_sd 0 0 0.5 0.5 0 0 -0.5 -0.5

 0 0 0 0 /cl; 

estimate 'Dotplot vs Mean&SD' PartCond*Var*scenario_sd 0 0 0.5 0.5 0 0 0

 0 0 0 -0.5 -0.5 /cl; 

estimate 'Dotplot vs Median-only' PartCond*Var*scenario_sd -0.166666667 -0.166666667 0.5 0.5 -

0.166666667 -0.166666667 0 0 -0.166666667 -0.166666667 0 0 /cl; 

estimate 'Boxplot vs Mean&SD' PartCond*Var*scenario_sd 0 0 0 0 0 0 0.5

 0.5 0 0 -0.5 -0.5 /cl; 

estimate 'Boxplot vs Median-only' PartCond*Var*scenario_sd -0.166666667 -0.166666667 0 0 -

0.166666667 -0.166666667 0.5 0.5 -0.166666667 -0.166666667 0 0 /cl; 

estimate 'Mean&SD vs Median-only' PartCond*Var*scenario_sd  -0.166666667 -0.166666667 0 0

 -0.166666667 -0.166666667 0 0 -0.166666667 -0.166666667 0.5 0.5 /cl; 

 

estimate 'Dotplot: Large vs Small SD' PartCond*Var*scenario_sd 0 0 1 -1 0 0 0

 0 0 0 0 0 / cl; 

estimate 'Boxplot: Large vs Small SD' PartCond*Var*scenario_sd 0 0 0 0 0 0 1

 -1 0 0 0 0 / cl; 

estimate 'Mean&SD: Large vs Small SD' PartCond*Var*scenario_sd 0 0 0 0 0 0

 0 0 0 0 1 -1 /cl; 

estiamte 'Median : Large vs Small SD' PartCond*Var*scenario_sd 0.333333333 -0.333333333 0 0

 0.333333333 -0.333333333 0 0 0.333333333 -0.333333333 0 0 / cl; 

 

estimate 'Large SD: Dot vs Box' PartCond*Var*scenario_sd 0 0 1 0 0 0 -1

 0 0 0 0 0 / cl; 

estimate 'Large SD: Dot vs SD ' PartCond*Var*scenario_sd 0 0 1 0 0 0 0

 0 0 0 -1 0 / cl; 

estimate 'Large SD: Dot vs Med' PartCond*Var*scenario_sd -0.333333333 0 1 0 -0.333333333

 0 0 0 -0.333333333 0 0 0 /cl; 

estimate 'Large SD: Box vs SD ' PartCond*Var*scenario_sd 0 0 0 0 0 0 1

 0 0 0 -1 0 /cl; 

estimate 'Large SD: Box vs Med' PartCond*Var*scenario_sd -0.333333333 0 0 0 -0.333333333

 0 1 0 -0.333333333 0 0 0 /cl; 

estimate 'Large SD: SD  vs Med' PartCond*Var*scenario_sd -0.333333333 0 0 0 -0.333333333

 0 0 0 -0.333333333 0 1 0 /cl; 

 

estimate 'Small SD: Dot vs Box' PartCond*Var*scenario_sd 0 0 0 1 0 0 0 -1

 0 0 0 0 / cl; 

estimate 'Small SD: Dot vs SD ' PartCond*Var*scenario_sd 0 0 0 1 0 0 0 0

 0 0 0 -1 / cl; 

estimate 'Small SD: Dot vs Med' PartCond*Var*scenario_sd 0 -0.333333333 0 1 0 -0.333333333

 0 0 0 -0.333333333 0 0 /cl; 

estimate 'Small SD: Box vs SD ' PartCond*Var*scenario_sd 0 0 0 0 0 0 0 1

 0 0 0 -1 /cl; 

estimate 'Small SD: Box vs Med' PartCond*Var*scenario_sd 0 -0.333333333 0 0 0 -0.333333333

 0 1 0 -0.333333333 0 0 /cl; 
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estimate 'Small SD: SD  vs Med' PartCond*Var*scenario_sd 0 -0.333333333 0 0 0 -0.333333333

 0 0 0 -0.333333333 0 1 /cl; 

run; quit; 

 

 

Solution for Fixed Effects 

Effect PartCond Var scenario_sd Estimate 

Standard 

Error DF t Value Pr > |t| 

Intercept       65.7833 4.2933 74.2 15.32 <.0001 

PartCon*Var*scenario Dotplot FALSE 2 -3.8333 6.0717 74.2 -0.63 0.5298 

PartCon*Var*scenario Dotplot FALSE 5 -4.2667 6.0717 74.2 -0.70 0.4844 

PartCon*Var*scenario Dotplot TRUE 2 1.4000 6.0717 74.2 0.23 0.8183 

PartCon*Var*scenario Dotplot TRUE 5 -15.9000 6.0717 74.2 -2.62 0.0107 

PartCon*Var*scenario Boxplot FALSE 2 -10.5833 6.0717 74.2 -1.74 0.0855 

PartCon*Var*scenario Boxplot FALSE 5 -9.6000 6.0717 74.2 -1.58 0.1181 

PartCon*Var*scenario Boxplot TRUE 2 -6.9667 6.0717 74.2 -1.15 0.2549 

PartCon*Var*scenario Boxplot TRUE 5 -14.3000 6.0717 74.2 -2.36 0.0212 

PartCon*Var*scenario Standard_Deviation FALSE 2 -1.7000 2.4712 651 -0.69 0.4917 

PartCon*Var*scenario Standard_Deviation FALSE 5 -4.7500 2.4712 651 -1.92 0.0550 

PartCon*Var*scenario Standard_Deviation TRUE 2 4.3167 2.4712 651 1.75 0.0811 

PartCon*Var*scenario Standard_Deviation TRUE 5 0 . . . . 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

PartCon*Var*scenario 11 238 7.14 <.0001 

Estimates 

Label Estimate 

Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

Large SD: Average Median-only 60.4111 2.4788 74.2 24.37 <.0001 0.05 55.4723 65.3499 
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Estimates 

Label Estimate 

Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

Large SD: Boxplot 58.8167 4.2933 74.2 13.70 <.0001 0.05 50.2624 67.3709 

Large SD: Dotplot 67.1833 4.2933 74.2 15.65 <.0001 0.05 58.6291 75.7376 

Large SD: Mean&SD 70.1000 4.2933 74.2 16.33 <.0001 0.05 61.5457 78.6543 

Small SD: Average Median-only 59.5778 2.4788 74.2 24.04 <.0001 0.05 54.6390 64.5166 

Small SD: Boxplot 51.4833 4.2933 74.2 11.99 <.0001 0.05 42.9291 60.0376 

Small SD: Dotplot 49.8833 4.2933 74.2 11.62 <.0001 0.05 41.3291 58.4376 

Small SD: Mean&SD 65.7833 4.2933 74.2 15.32 <.0001 0.05 57.2291 74.3376 

Large vs. Small SD 5.2417 1.0089 651 5.20 <.0001 0.05 3.2607 7.2227 

Dotplot vs Boxplot 3.3833 5.8148 62.5 0.58 0.5628 0.05 -8.2384 15.0051 

Dotplot vs Mean&SD -9.4083 5.8148 62.5 -1.62 0.1107 0.05 -21.0301 2.2134 

Dotplot vs Median-only -1.4611 3.5055 74.2 -0.42 0.6780 0.05 -8.4456 5.5234 

Boxplot vs Mean&SD -12.7917 5.8148 62.5 -2.20 0.0315 0.05 -24.4134 -1.1699 

Boxplot vs Median-only -4.8444 3.5055 74.2 -1.38 0.1711 0.05 -11.8290 2.1401 

Mean&SD vs Median-only 7.9472 3.5055 74.2 2.27 0.0263 0.05 0.9627 14.9318 

Dotplot: Large vs Small SD 17.3000 2.4712 651 7.00 <.0001 0.05 12.4475 22.1525 

Boxplot: Large vs Small SD 7.3333 2.4712 651 2.97 0.0031 0.05 2.4809 12.1858 

Mean&SD: Large vs Small SD 4.3167 2.4712 651 1.75 0.0811 0.05 -0.5358 9.1691 

Median : Large vs Small SD 0.8333 1.4267 651 0.58 0.5594 0.05 -1.9682 3.6349 

Large SD: Dot vs Box 8.3667 6.0717 74.2 1.38 0.1724 0.05 -3.7309 20.4642 

Large SD: Dot vs SD -2.9167 6.0717 74.2 -0.48 0.6324 0.05 -15.0142 9.1809 

Large SD: Dot vs Med 6.7722 3.7847 100 1.79 0.0766 0.05 -0.7365 14.2810 

Large SD: Box vs SD -11.2833 6.0717 74.2 -1.86 0.0671 0.05 -23.3809 0.8142 
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Estimates 

Label Estimate 

Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

Large SD: Box vs Med -1.5944 3.7847 100 -0.42 0.6745 0.05 -9.1032 5.9143 

Large SD: SD vs Med 9.6889 3.7847 100 2.56 0.0120 0.05 2.1802 17.1976 

Small SD: Dot vs Box -1.6000 6.0717 74.2 -0.26 0.7929 0.05 -13.6976 10.4976 

Small SD: Dot vs SD -15.9000 6.0717 74.2 -2.62 0.0107 0.05 -27.9976 -3.8024 

Small SD: Dot vs Med -9.6944 3.7847 100 -2.56 0.0119 0.05 -17.2032 -2.1857 

Small SD: Box vs SD -14.3000 6.0717 74.2 -2.36 0.0212 0.05 -26.3976 -2.2024 

Small SD: Box vs Med -8.0944 3.7847 100 -2.14 0.0349 0.05 -15.6032 -0.5857 

Small SD: SD vs Med 6.2056 3.7847 100 1.64 0.1042 0.05 -1.3032 13.7143 

 

Prediction Probability 

 

 

On Central Tendency 

 
proc mixed data = Exp2.data_nondev; 

CLASS ParticipantID PartCond Var scenario_sd; 

model Prob = Var*PartCond / residual ddfm=satterth solution outp=res ; 

repeated / subject = ParticipantID(PartCond) type = cs; 

estimate 'Dotplot' intercept 1 PartCond*Var 0 1 0 0 0 0 / cl; 

estimate 'Boxplot' intercept 1 PartCond*Var 0 0 0 1 0 0 / cl;  

estimate 'Mean&SD' intercept 1 PartCond*Var 0 0 0 0 0 1 / cl;  

estimate 'Med-only' intercept 1 PartCond*Var 0.333333333 0 0.333333333 0 0.333333333 0 / cl;  

estimate 'Dot vs Box' PartCond*Var 0 1 0 -1 0 0 / cl; 

estimate 'Dot vs SD ' PartCond*Var 0 1 0 0 0 -1 / cl; 

estimate 'Dot vs Med' PartCond*Var -0.333333333 1 -0.333333333 0 -0.333333333 0 /cl; 

estimate 'Box vs SD ' PartCond*Var 0 0 0 1 0 -1 /cl; 

estimate 'Box vs Med' PartCond*Var -0.333333333 0 -0.333333333 1 -0.333333333 0 /cl; 

estimate 'Dot vs Box' PartCond*Var -0.333333333 0 -0.333333333 0 -0.333333333 1 /cl; 

run; quit; 

 

Solution for Fixed Effects 

Effect PartCond Var Estimate 

Standard 

Error DF t Value Pr > |t| 

Intercept     57.7725 3.8461 39.2 15.02 <.0001 

PartCond*Var Dotplot FALSE -3.2173 5.0009 39.1 -0.64 0.5237 
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Solution for Fixed Effects 

Effect PartCond Var Estimate 

Standard 

Error DF t Value Pr > |t| 

PartCond*Var Dotplot TRUE -5.5931 5.3160 49.2 -1.05 0.2979 

PartCond*Var Boxplot FALSE -4.9098 5.4995 37.5 -0.89 0.3777 

PartCond*Var Boxplot TRUE -6.3067 5.6032 40.3 -1.13 0.2670 

PartCond*Var Standard_Deviation FALSE -4.4809 2.3389 232 -1.92 0.0566 

PartCond*Var Standard_Deviation TRUE 0 . . . . 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

PartCond*Var 5 72 0.99 0.4289 

Estimates 

Label Estimate 

Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

Dotplot 52.1793 3.6698 64.6 14.22 <.0001 0.05 44.8494 59.5093 

Boxplot 51.4658 4.0748 41.3 12.63 <.0001 0.05 43.2385 59.6930 

Mean&SD 57.7725 3.8461 39.2 15.02 <.0001 0.05 49.9944 65.5505 

Med-only 53.5698 2.0986 36.4 25.53 <.0001 0.05 49.3153 57.8243 

Dot vs Box 0.7136 5.4837 50 0.13 0.8970 0.05 -10.3008 11.7279 

Dot vs SD -5.5931 5.3160 49.2 -1.05 0.2979 0.05 -16.2751 5.0888 

Dot vs Med -1.3905 3.5672 87.7 -0.39 0.6976 0.05 -8.4799 5.6989 

Box vs SD -6.3067 5.6032 40.3 -1.13 0.2670 0.05 -17.6285 5.0151 

Box vs Med -2.1041 3.5403 60.8 -0.59 0.5545 0.05 -9.1839 4.9758 

Dot vs Box 4.2027 3.3813 55.5 1.24 0.2191 0.05 -2.5724 10.9777 
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Not On Central Tendency 

 
proc mixed data = Exp2.dev; 

CLASS ParticipantID PartCond Var scenario_sd; 

model Prob = Var*PartCond/ residual ddfm=satterth solution outp=res ; 

random intercept/ subject = ParticipantID type = cs; 

estimate 'Dotplot' intercept 1 PartCond*Var 0 1 0 0 0 0 / cl; 

estimate 'Boxplot' intercept 1 PartCond*Var 0 0 0 1 0 0 / cl;  

estimate 'Mean&SD' intercept 1 PartCond*Var 0 0 0 0 0 1 / cl;  

estimate 'Med-only' intercept 1 PartCond*Var 0.333333333 0 0.333333333 0 0.333333333 0 / cl;  

estimate 'Dot vs Box' PartCond*Var 0 1 0 -1 0 0 / cl; 

estimate 'Dot vs SD ' PartCond*Var 0 1 0 0 0 -1 / cl; 

estimate 'Dot vs Med' PartCond*Var -0.333333333 1 -0.333333333 0 -0.333333333 0 /cl; 

estimate 'Box vs SD ' PartCond*Var 0 0 0 1 0 -1 /cl; 

estimate 'Box vs Med' PartCond*Var -0.333333333 0 -0.333333333 1 -0.333333333 0 /cl; 

estimate 'Dot vs Box' PartCond*Var -0.333333333 0 -0.333333333 0 -0.333333333 1 /cl; 

run; quit; 

 

 

Solution for Fixed Effects 

Effect PartCond Var Estimate 

Standard 

Error DF t Value Pr > |t| 

Intercept     65.5288 3.2389 52.7 20.23 <.0001 

PartCond*Var Dotplot FALSE -2.1603 4.5328 63 -0.48 0.6353 

PartCond*Var Dotplot TRUE -5.5578 4.3061 52.7 -1.29 0.2024 

PartCond*Var Boxplot FALSE -5.3874 4.4666 56.4 -1.21 0.2328 

PartCond*Var Boxplot TRUE -5.8410 4.3938 53.5 -1.33 0.1894 

PartCond*Var Standard_Deviation FALSE 1.4809 2.2174 410 0.67 0.5046 

PartCond*Var Standard_Deviation TRUE 0 . . . . 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

PartCond*Var 5 103 1.00 0.4219 

Estimates 

Label Estimate 

Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

Dotplot 59.9711 2.8376 52.7 21.13 <.0001 0.05 54.2789 65.6633 

Boxplot 59.6879 2.9690 54.5 20.10 <.0001 0.05 53.7365 65.6393 
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Estimates 

Label Estimate 

Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

Mean&SD 65.5288 3.2389 52.7 20.23 <.0001 0.05 59.0315 72.0261 

Med-only 63.5066 1.8483 64.4 34.36 <.0001 0.05 59.8146 67.1985 

Dot vs Box 0.2832 4.1070 53.6 0.07 0.9453 0.05 -7.9521 8.5185 

Dot vs SD -5.5578 4.3061 52.7 -1.29 0.2024 0.05 -14.1958 3.0803 

Dot vs Med -3.5355 2.7063 83.8 -1.31 0.1950 0.05 -8.9175 1.8465 

Box vs SD -5.8410 4.3938 53.5 -1.33 0.1894 0.05 -14.6520 2.9700 

Box vs Med -3.8187 2.7611 84.9 -1.38 0.1703 0.05 -9.3087 1.6713 

Dot vs Box 2.0223 2.8820 84.2 0.70 0.4848 0.05 -3.7086 7.7531 
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Appendix E – Pilot Experiment on Visualization Effects on 
Estimation Behavior 

This Appendix was first presented at the 12th International Naturalistic Decision Making 

Conference (Giang & Donmez, 2015). 

Interpreting Visualizations of Historical Variability for 

Estimating Future Events 

Wayne Chi Wei GIANG and Birsen DONMEZ 
Human Factors and Applied Statistics Laboratory, Mechanical and Industrial Engineering, University of 

Toronto 

ABSTRACT 

Estimations of variables like travel time are often important for scheduling and logistics decisions. 

When these estimations are made under high time pressure, visualizations of historical data can be used 

to help produce more accurate estimates and decisions. In this preliminary study, we examine four 

visualizations that represent increasing amounts of information about the dispersion and shape of the 

historical data and examine how these visualizations are used to produce estimates of task completion 

times. In particular, we are interested in whether the level of variability information provided causes the 

decision makers to systematically adjust their estimate away from the central tendency of the historical 

data. We found that participants were more confident and tended to deviate from the central tendency 

more when they had information about the range and shape of historical data compared to when they 

only had a point estimate or a point estimate and standard deviation. 

KEYWORDS 

Planning and prediction; transportation; estimation; visualizations. 

INTRODUCTION 

Humans are often required to make decisions in situations that are characterized by large degrees of complexity and 

uncertainty that cannot be deterministically modelled. These situations often arise due to incomplete or uncertain 

information about the current or future state of the world, and thus decision makers must estimate and predict the 

variables that are critical for their decisions. Furthermore, the presence of time pressure increases the difficulty of 

these decisions and may lead to the use of heuristics and biases, which may not always be appropriate (Payne et al., 

1993; Tversky & Kahneman, 1974). Decision support systems providing historical data trends is one method to 

support evidence-based decisions that can help mitigate some of these difficulties. 

An example scenario where decision makers are required to make short-term, time-critical, evidence-based 

decisions is medical dispatch. For example, medical dispatchers at Ornge, the medical transport system in Ontario, 

Canada, make their dispatch decisions by estimating time to definitive care, i.e., how long it takes to transfer patients 

between hospitals. However, in our previous work (Giang, Donmez, Fatahi, Ahghari, & MacDonald, 2014), we had 

identified that Ornge dispatcher estimates of time to definitive care tended to be shorter than actual times. Transfers 

are impacted by a variety of factors, such as traffic and patient condition. These factors are often hard for dispatchers 

to account for, and can cause transfers to deviate from normally expected times.  

In response to these findings, a decision support tool was developed to provide the dispatchers with estimates 

based on historical transfer information that had less error than the dispatchers’ own estimates. The tool provided 

point-estimates of transfer times calculated based on descriptive statistics and linear models. However, the point-

estimates only communicated information on central tendency and fail to provide insight about the historical 

variability and uncertainty associated with these estimates. Ornge’s dispatchers are expert decision makers who often 

have additional contextual information (e.g., knowledge about the crews involved or the weather) that they use to 
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modify their own transfer time estimates. Visualizations of the variability of historical data may allow disaptchers to 

use this contexutal information in a way that is tied to historical data.  

However, there has been little work done on how visualizations of historical data are interpreted for decision 

making. Uncertainty visualizations for dynamic decision making scenarios have typically dealt with providing 

classification information about objects instead of display information about the variability of continuous variables. 

For example, Neyedli, Hollands, and Jamieson (Neyedli et al., 2011) developed and tested visualizations that showed 

the reliability of a system which detects friendly or enemy targets. Bisantz et al. (2011) developed visualizations of 

the uncertainty associated with object classifications in a missile detection game. In both these examples, the data that 

is being visualized is a classification of an object, the uncertainty or reliability information is a measurement of the 

likelihood of belonging to a category, and decision makers must use this information to make a judgment of the true 

identity of the object. However in applications such as medical dispatch, a critical part of logistics and coordination is 

the estimation of a specific time as opposed to a judgment of which category (e.g., late or not late) the time estimation 

belongs. Tasks such as scheduling ambulance arrival times, booking helipads, and letting staff at the receiving facility 

know when they should expect to receive a patient all benefit from having more accurate time estimates. 

Presenting uncertainty information about continuous variables has shown mixed results in terms of performance 

and usage that appear to be highly tied to the method of presentation. Nadav-Greenberg and Joslyn (2009) examined 

verbal, numeric, and graphical representations of uncertainty information about nighttime temperature lows in a road-

salting decision task. Participants were asked to predict the expected nighttime low, while making a decision about 

whether to salt the road if the temperature was expected to drop below freezing. They found that the uncertainty 

information helped participants make better decisions about road salting, and that the estimates of the nighttime lows 

were impacted by the type of information given (e.g., full range, probability of freezing). However, they only explored 

one graphical representation of uncertainty (for full range only) which they found to be not as effective in improving 

salting decisions in comparison to numerical representations. Similarly, Scown, Bartlett, and McCarley (2014) found 

that non-expert decision makers often did not use error bars when making two-point comparisons about product review 

scores. The benefits of visual representations of uncertainty information are often harder to study because individuals 

tend to construct different internal models of underlying probability distributions that are influenced by the graphical 

elements of the visualization (Tak, Toet, & van Erp, 2014). Thus, there may be factors that influence how 

visualizations of variability information are interpreted by decision makers, and these effects might be tied to the 

amount of variability information provided. 

The goal of this preliminary study is to examine how the amount of variability information influences the way 

decision makers interpret visualizations of historical data. We examined four visualizations that represent increasing 

amounts of information about the dispersion and shape of the historical data: central tendency only, mean and standard 

deviation, boxplot, and violin plot. In particular, we are interested in examining whether the level of variability 

information provided will cause the decision makers to systematically adjust their estimate away from the central 

tendency (i.e., median, mode, or mean) of the historical data.  

METHODS 

Participants and Apparatus 

We recruited 22 participants from the local community and the undergraduate and graduate population at the 

University of Toronto. Participants were selected using a screening questionnaire for completion of at least one 

probability or statistics course during their post-secondary education. Furthermore, all participants had normal or 

corrected-to-normal vision and normal colour perception.  

Of the 22 participants, 13 were male and 9 were female. Participant ages ranged between 19 and 30 with a mean 

(M) of 24.5 years and a standard deviation (SD) of 3.0 years. Participants also reported taking an average of 1.8 

probability or statistics courses during their post-secondary education (SD = 0.8), with 10 participants having taken 

these courses in graduate school and 12 participants at the undergraduate level. 

The experiment was conducted in a quiet office environment. Participants were seated in front of a 24-inch monitor 

that displayed the experimental tasks. Participants responded to the tasks using a keyboard and mouse. The 

experimental software was created using the open-source PsychoPy framework (Pierce, 2007). 

Experimental Scenario and Task 

An experimental scenario was created where the participants would not have any contextual information to draw from 

other than the information presented in the visualizations. Participants took on the role of a mission commander 

responsible to overseeing a number of scientific space rovers exploring a planet. The role of the mission commander 

was to monitor the amount of time required for a rover to complete a scientific task (e.g., collecting or analysing 

samples) in order to determine whether the rover would be able to stay on schedule with their upcoming tasks. 
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Participants were told that each rover had their own set of historical data that represented the task completion times 

for that rover in the past, so that every rover should be treated independently. 

 Eight datasets were generated to serve as the historical data for the rovers. Each of these datasets was formed by 

sampling 50 data points from normal distributions with 4 different means and 2 levels of standard deviation for each 

mean. The four means used were 33, 56, 70, and 79, and the two levels of standard deviation were 10% of the mean 

and 30% of the mean. In addition, a “true” task time was also sampled from the distribution which represented the 

correct task completion time. The 8 datasets were presented using each of the 4 visualizations and replicated 4 times 

for a total of 128 trials per participant. Each of these trials represented a new rover that the participants had to monitor.  

Participants were responsible for two tasks, similar to those used by Nadav-Greenberg and Joslyn (2009). In the 

first task, i.e., the estimation task, participants were required to estimate how long they thought it would take for the 

rover to complete its current scientific task. The participants selected a value using a slider scale that was superimposed 

on the uncertainty visualization, as shown in Figure 1. Estimates were restricted to integer values. In the second task, 

i.e., the judgment task, participants were asked to make a judgment about whether they felt that the rover was going 

to be able to complete its task by a specific cut-off time, also shown in Figure 1. Participants were also asked to rate 

their confidence in these two tasks on a scale between 1 and 100. During the experiment, participants completed trials 

containing both the estimation task and the judgment task, with the order of task presentation counterbalanced. 
                               

 
 Figure 1: The estimation task with a slider bar (left) and the judgment task with the cut-off time (right). 

Experimental Design 

The primary independent variable of interest was the type of visualization of the historical data, a within subject 

variable. Four visualization conditions (Figure 2) were designed for this experiment with increasing amounts of 

information about the dispersion and shape of the distribution of historical observations. In a baseline, central tendency 

only condition, only the median of the historical sample was displayed. The mean & standard deviation visualization 

condition showed both a measure of central tendency and a measure of dispersion but did not provide information 

about the shape of the historical sample. The boxplot visualization provided a measure of central tendency (median) 

as well as two measures of dispersion (interquartile range and range). The boxplot visualization also provided 

information about the skewness of the historical sample; the kurtosis of the historical sample could be inferred from 

the relative lengths of the box and whiskers. Finally, the violin plot visualization provided an indicator for the median, 

the interquartile range and range, as well as an estimate of the distribution of the historical sample (i.e., a kernel density 

estimate) which provides information of both skewness and kurtosis. All visualizations were generated using R, with 

the violin plots created using the ‘vioplot’ package. The x-axis in these visualizations represented minutes (task 

completion time), while the y-axis in the violin plot represented an estimate of the probability density of the historical 

sample. 
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Figure 2: The visualizations of historical data: a) median only, b) mean & standard deviation, c) boxplot, and d) 

violin plot. 

Experimental Procedure 

Before beginning the experiment, participants were given a review of the concepts of central tendency and dispersion, 

and an introduction to the visualizations used in the experiment. Participants were then provided with a short practice 

session of 4 trials for each of the visualization conditions. They were also told that there would be a $5 performance 

bonus during the experimental trials, although everyone was given this performance bonus. 

In the first half of the experiment, participants were not given any feedback on their task performance. In the 

second half, participants were provided with feedback about the “true” task duration for that rover, and feedback about 

the correctness of their judgments after each trial. The experiment took approximately 90 minutes to complete, and 

participants were paid $20, which included the performance bonus. 

Data Processing 

The analysis for this paper focuses on the no feedback trials. There were three dependent variables of interest with 

respect to the estimation of task times: 1) the distance between the participant’s estimate and the central tendency 

expressed in number of standard deviations of the historical data, 2) the participant’s confidence in the estimate rated 

between 1 and 100, and 3) the number of times the participant’s estimate was not a central tendency point. The first 

dependent variable was calculated by using the closest measure of central tendency (i.e., mode, median, or mean) to 

the participant’s estimate since each visualization type had a different prominently displayed central tendency 

measure, and for the violin plot, there were multiple features that the participant could use as a central tendency point. 

Since participants were restricted to responding in integer values, a correction was applied for the third dependent 

variable: a response was counted to be on a central tendency measure as long as it fell within 0.5 units below or above 

it. Seven outlying trials, which had participant estimates greater than 2 standard deviations from the closest central 

tendency were removed. For all three dependent variables, values were averaged for each participant up to the 

visualization level. 

RESULTS 

A linear mixed model was fitted to the distance to central tendency data (dependent variable 1) as a function of 

visualization type (median, mean & standard deviation, boxplot, and violin plot). Participant was used as a random 

factor and a square-root transformation was employed to ensure normality of residuals. Visualization type was found 

to be a significant factor, F(3, 63) = 3.33, p = .03. Post-hoc analyses using Tukey contrasts found that the violin plot 

(Δ = 0.074, p = .02) had significantly larger distances to central tendency  compared to the median only visualization, 

while the boxplot (Δ = 0.063, p = .06) had only marginally significantly larger distances to central tendency than the 

median only visualization.  

A second linear mixed model was fitted to the confidence data as a function of visualization type, with participant 

as a random factor. Visualization type was found to be significant, F(3, 63) = 17.6, p <.0001. Post-hoc comparisons 

using Tukey contrasts revealed that the median only visualization resulted in significantly lower confidence ratings 

than the mean & standard deviation (Δ = 5.7, p < .001), the boxplot (Δ = 7.1, p < .001), and the violin plot (Δ = 9.3, p 

< .001) visualizations. In addition, the  mean & standard deviation visualization also resulted in lower confidence 

ratings than the violin plot, Δ = 3.5, p =.04.  

Finally, a Poisson regression model was fitted to the third dependent variable (number of times the participant’s 

estimate was not a central tendency point) with visualization type as a predictor variable. The number of trials 

completed by each participant per visualization (typically 16) was used as an offset variable, and participant was 

treated as a random factor. Again, visualization type was found to be a significant factor, χ2(3) = 33.3. p < .001. The 
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median data values for this dependent variable for the four visualizations (i.e., median only, mean & standard 

deviation, boxplot, and violin plot) were 4.5, 5.5, 10, and 11, respectively. Post-hoc analysis using Tukey contrasts 

found that participants had a greater number of deviations from the central tendency with the boxplot (p < .001) and 

the violin plot (p < .001) visualizations when compared to the median only visualization. Similarly, the boxplot (p = 

.003) and the violin plot (p < .001) visualizations also resulted in a greater number of deviations than the the mean & 

standard deviation visualization.  

DISCUSSION AND CONCLUSION 

These results suggest that the type of visualization used has an impact on how individuals make estimations through 

historical data. Participants did deviate away from the central tendency, and deviations were both more likely to occur 

and also to have larger magnitudes for the visualizations that provided more variability information (i.e., boxplot and 

violin plot). Participants’ ratings of confidence were also higher for the boxplot and the violin plot visualizations. The 

central tendency points are the statistically optimal responses (since the scenarios were sampled from normal 

distributions), yet it appeared that the shape and range information led our participants to feel safe about estimating 

away from central tendency. It is also possible that participants had a harder time picking out a single measure of 

central tendency from the graphs containing more information, leading to the larger deviations from the central 

tendency measures that we calculated. Overall, this preliminary study suggests that participants do try to use variability 

information in adjusting their estimates of future events using historical data, and that further study of how contextual 

information might also influence their estimates is required.  
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Appendix F – Experimental Materials for Chapter 7 

Amazon Mechanical Turk HIT for Screening Questionnaire 
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Consent Form for Screening Questionnaire 

 

 

 

 

 

Amazon Mechanical Turk HIT for Experiment 
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Consent Form for Experiment 
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Datasets used for experiment in Chapter 7 

Symmetric Distributions 

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 

15.5 19.5 23.5 10.5 14.5 18.5 

16 20 24 12.5 16.5 20.5 

16.5 20.5 24.5 14 18 22 

17 21 25 14.5 18.5 22.5 

17.5 21.5 25.5 15.5 19.5 23.5 

17.5 21.5 25.5 16 20 24 

17.5 21.5 25.5 16.5 20.5 24.5 

18 22 26 17 21 25 

18 22 26 17 21 25 

18 22 26 17.5 21.5 25.5 

18.5 22.5 26.5 18 22 26 

18.5 22.5 26.5 18.5 22.5 26.5 

18.5 22.5 26.5 18.5 22.5 26.5 

19 23 27 19 23 27 

19 23 27 19 23 27 

19 23 27 19.5 23.5 27.5 

19 23 27 20 24 28 

19 23 27 20 24 28 

19.5 23.5 27.5 20.5 24.5 28.5 

19.5 23.5 27.5 20.5 24.5 28.5 

19.5 23.5 27.5 21 25 29 

19.5 23.5 27.5 21 25 29 

19.5 23.5 27.5 21.5 25.5 29.5 

20 24 28 21.5 25.5 29.5 

20 24 28 22 26 30 

20 24 28 22 26 30 

20 24 28 22.5 26.5 30.5 

20.5 24.5 28.5 22.5 26.5 30.5 

20.5 24.5 28.5 23 27 31 

20.5 24.5 28.5 23 27 31 

20.5 24.5 28.5 23.5 27.5 31.5 

20.5 24.5 28.5 23.5 27.5 31.5 

21 25 29 24 28 32 

21 25 29 24 28 32 

21 25 29 24.5 28.5 32.5 

21 25 29 25 29 33 

21 25 29 25 29 33 

21.5 25.5 29.5 25.5 29.5 33.5 

21.5 25.5 29.5 25.5 29.5 33.5 

21.5 25.5 29.5 26 30 34 
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22 26 30 26.5 30.5 34.5 

22 26 30 27 31 35 

22 26 30 27 31 35 

22.5 26.5 30.5 27.5 31.5 35.5 

22.5 26.5 30.5 28 32 36 

22.5 26.5 30.5 28.5 32.5 36.5 

23 27 31 29.5 33.5 37.5 

23.5 27.5 31.5 30 34 38 

24 28 32 31.5 35.5 39.5 

24.5 28.5 32.5 33.5 37.5 41.5 

Skewed Distributions 

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 

15 19 23 12 16 20 

15.5 19.5 23.5 13.5 17.5 21.5 

15.5 19.5 23.5 14 18 22 

16 20 24 14.5 18.5 22.5 

16 20 24 15 19 23 

16 20 24 15 19 23 

16 20 24 15.5 19.5 23.5 

16.5 20.5 24.5 15.5 19.5 23.5 

16.5 20.5 24.5 16 20 24 

16.5 20.5 24.5 16 20 24 

16.5 20.5 24.5 16.5 20.5 24.5 

16.5 20.5 24.5 16.5 20.5 24.5 

16.5 20.5 24.5 17 21 25 

17 21 25 17 21 25 

17 21 25 17 21 25 

17 21 25 17.5 21.5 25.5 

17 21 25 17.5 21.5 25.5 

17 21 25 17.5 21.5 25.5 

17 21 25 18 22 26 

17 21 25 18 22 26 

17.5 21.5 25.5 18 22 26 

17.5 21.5 25.5 18.5 22.5 26.5 

17.5 21.5 25.5 18.5 22.5 26.5 

17.5 21.5 25.5 19 23 27 

17.5 21.5 25.5 19 23 27 

17.5 21.5 25.5 19 23 27 

17.5 21.5 25.5 19.5 23.5 27.5 

18 22 26 19.5 23.5 27.5 

18 22 26 19.5 23.5 27.5 

18 22 26 20 24 28 
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18 22 26 20 24 28 

18 22 26 20.5 24.5 28.5 

18 22 26 20.5 24.5 28.5 

18.5 22.5 26.5 21 25 29 

18.5 22.5 26.5 21 25 29 

18.5 22.5 26.5 21.5 25.5 29.5 

18.5 22.5 26.5 21.5 25.5 29.5 

19 23 27 22 26 30 

19 23 27 22.5 26.5 30.5 

19 23 27 22.5 26.5 30.5 

19.5 23.5 27.5 23 27 31 

19.5 23.5 27.5 23.5 27.5 31.5 

19.5 23.5 27.5 24 28 32 

20 24 28 25 29 33 

20 24 28 25.5 29.5 33.5 

20.5 24.5 28.5 26.5 30.5 34.5 

21 25 29 27.5 31.5 35.5 

22 26 30 29.5 33.5 37.5 

23 27 31 32.5 36.5 40.5 

26 30 34 39.5 43.5 47.5 
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Appendix G – Statistical Models for Chapter 7 

 

Predictions on the Salient Central Tendency Point 

 

Full Model 

 

proc genmod data = Sym_exp.Data; 

CLASS PartID Vis_type scenario_sd context; 

model deviation = Vis_type|scenario_sd|context / link = logit dist = binomial type3 wald; 

repeated subject = PartID; 

run; quit; 

 

Wald Statistics For Type 3 GEE Analysis 

Source DF Chi-Square Pr > ChiSq 

Vis_type 1 0.05 0.8235 

scenario_sd 1 0.02 0.8893 

Vis_type*scenario_sd 1 0.85 0.3578 

context 2 143.42 <.0001 

Vis_type*context 2 1.62 0.4454 

scenario_sd*context 2 1.05 0.5923 

Vis_ty*scenar*contex 2 1.03 0.5974 

 

Final Model 

 

proc genmod data = Sym_exp.Data; 

CLASS PartID Vis_type scenario_sd context; 

model deviation = context/ link = logit dist = binomial type3 wald; 

repeated subject = PartID; 

estimate 'No Context' intercept 1 Context 1 0 0 /exp; 

estimate 'Likelihood' intercept 1 Context 0 1 0 /exp; 

estimate 'Consequence' intercept 1 Context 0 0 1 /exp; 

estimate 'No Context vs Consequence' Context 1 0 -1 /exp; 

estimate 'No Context vs Likelihood' Context 1 -1 0/exp; 

estimate 'Consequence vs Likelihood' Context 0 -1 1 /exp; 

run; quit; 
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Analysis Of GEE Parameter Estimates 

Empirical Standard Error Estimates 

Parameter 

  

Estimate 

Standard 

Error 95% Confidence Limits Z Pr > |Z| 

Intercept   -0.4638 0.1789 -0.8145 -0.1131 -2.59 0.0095 

context Baseline 1.3846 0.1829 1.0261 1.7430 7.57 <.0001 

context Likelihood -3.1868 0.4734 -4.1147 -2.2589 -6.73 <.0001 

context Value 0.0000 0.0000 0.0000 0.0000 . . 

Wald Statistics For Type 3 GEE Analysis 

Source DF Chi-Square Pr > ChiSq 

context 2 134.83 <.0001 

Contrast Estimate Results 

Label 

Mean 

Estima

te 

Mean 

L'Beta 

Estima

te 

Standar

d 

Error 

Alph

a 

L'Beta 

Chi-

Squar

e 

Pr > Chi

Sq 

Confidence 

Limits 

Confidence 

Limits 

No Context 0.7152 0.628

7 

0.788

3 

0.9207 0.2010 0.05 0.5267 1.3148 20.97 <.0001 

Exp(No 

Context) 

      2.5111 0.5049 0.05 1.6933 3.7239     

Likelihood 0.0253 0.011

1 

0.056

8 

-3.6507 0.4290 0.05 -

4.4915 

-2.8098 72.41 <.0001 

Exp(Likelihood

) 

      0.0260 0.0111 0.05 0.0112 0.0602     

Consequence 0.3861 0.306

9 

0.471

7 

-0.4638 0.1789 0.05 -

0.8145 

-0.1131 6.72 0.0095 

Exp(Consequen

ce) 

      0.6289 0.1125 0.05 0.4428 0.8930     
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Contrast Estimate Results 

Label 

Mean 

Estima

te 

Mean 

L'Beta 

Estima

te 

Standar

d 

Error 

Alph

a 

L'Beta 

Chi-

Squar

e 

Pr > Chi

Sq 

Confidence 

Limits 

Confidence 

Limits 

No Context vs 

Consequence 

0.7997 0.736

2 

0.851

1 

1.3846 0.1829 0.05 1.0261 1.7430 57.32 <.0001 

Exp(No Context 

vs 

Consequence) 

      3.9931 0.7302 0.05 2.7902 5.7144     

No Context vs 

Likelihood 

0.9898 0.974

9 

0.995

9 

4.5714 0.4648 0.05 3.6604 5.4824 96.73 <.0001 

Exp(No Context 

vs Likelihood) 

      96.6778 44.9359 0.05 38.876

5 

240.417

2 

    

Consequence vs 

Likelihood 

0.9603 0.905

4 

0.983

9 

3.1868 0.4734 0.05 2.2589 4.1147 45.31 <.0001 

Exp(Consequen

ce vs 

Likelihood) 

      24.2113 11.4620 0.05 9.5730 61.2334     

 

Direction of Predictions relative to Central Tendency Point 

 

Full Model 

 

proc genmod data = Sym_exp.Data_dev; 

CLASS PartID Vis_type scenario_sd context; 

model AboveCT = Vis_type|context|scenario_sd/ link = logit dist = binomial type3 wald; 

repeated subject = PartID; 

run; quit; 

 

Wald Statistics For Type 3 GEE Analysis 

Source DF Chi-Square Pr > ChiSq 

Vis_type 1 3.67 0.0555 

context 2 42.58 <.0001 

Vis_type*context 2 1.83 0.4005 

scenario_sd 1 4.35 0.0370 



165 

 

Wald Statistics For Type 3 GEE Analysis 

Source DF Chi-Square Pr > ChiSq 

Vis_type*scenario_sd 1 0.17 0.6803 

scenario_sd*context 2 1.92 0.3835 

Vis_ty*scenar*contex 2 4.68 0.0964 

 

Final Model 

 

proc genmod data = Sym_exp.Data_dev descending; 

CLASS PartID Vis_type scenario_sd context; 

model AboveCT = context scenario_sd / link = logit dist = binomial type3 wald; 

repeated subject = PartID; 

estimate 'No Context' intercept 1 Context 1 0 0 /exp; 

estimate 'Likelihood' intercept 1 Context 0 1 0 /exp; 

estimate 'Consequence' intercept 1 Context 0 0 1 /exp; 

estimate 'No Context vs Consequence' Context 1 0 -1 /exp; 

estimate 'Likelihood vs No Context' Context -1 1 0/exp; 

estimate 'Likelihood vs Consequence' Context 0 1 -1 /exp; 

estimate 'Smaller SD' intercept 1 scenario_sd 1 0 /exp; 

estimate 'Larger SD' intercept 1 Context 0 1 /exp; 

estimate 'Smaller vs Larger SD' scenario_sd 1 -1 /exp; 

run; quit; 

 

Analysis Of GEE Parameter Estimates 

Empirical Standard Error Estimates 

Parameter 

  

Estimate 

Standard 

Error 95% Confidence Limits Z Pr > |Z| 

Intercept   0.4300 0.2250 -0.0110 0.8709 1.91 0.0560 

context Baseline -0.0367 0.2911 -0.6072 0.5337 -0.13 0.8996 

context Likelihood 2.0386 0.3190 1.4135 2.6637 6.39 <.0001 

context Value 0.0000 0.0000 0.0000 0.0000 . . 

scenario_sd 2 -0.5650 0.2328 -1.0213 -0.1087 -2.43 0.0152 

scenario_sd 5 0.0000 0.0000 0.0000 0.0000 . . 
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Wald Statistics For Type 3 GEE Analysis 

Source DF Chi-Square Pr > ChiSq 

context 2 43.35 <.0001 

scenario_sd 1 5.89 0.0152 

Contrast Estimate Results 

Label 

Mean 

Estima

te 

Mean 

L'Beta 

Estima

te 

Standar

d 

Error 

Alph

a 

L'Beta 

Chi-

Squar

e 

Pr > Chi

Sq 

Confidence 

Limits 

Confidence 

Limits 

No Context 0.5277 0.371

3 

0.678

7 

0.1107 0.3251 0.05 -

0.526

5 

0.7480 0.12 0.7334 

Exp(No 

Context) 

      1.1171 0.3632 0.05 0.590

7 

2.1127     

Likelihood 0.8990 0.841

1 

0.937

4 

2.1861 0.2651 0.05 1.666

5 

2.7057 68.00 <.0001 

Exp(Likelihood)       8.9004 2.3595 0.05 5.293

6 

14.964

5 

    

Consequence 0.5368 0.442

9 

0.628

2 

0.1475 0.1923 0.05 -

0.229

5 

0.5245 0.59 0.4432 

Exp(Consequen

ce) 

      1.1589 0.2229 0.05 0.794

9 

1.6896     

No Context vs 

Consequence 

0.4908 0.352

7 

0.630

4 

-0.0367 0.2911 0.05 -

0.607

2 

0.5337 0.02 0.8996 

Exp(No Context 

vs 

Consequence) 

      0.9639 0.2806 0.05 0.544

9 

1.7053     

Likelihood vs 

No Context 

0.8885 0.790

5 

0.943

9 

2.0753 0.3813 0.05 1.328

0 

2.8227 29.63 <.0001 

Exp(Likelihood 

vs No Context) 

      7.9673 3.0378 0.05 3.773

6 

16.821

4 
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Contrast Estimate Results 

Label 

Mean 

Estima

te 

Mean 

L'Beta 

Estima

te 

Standar

d 

Error 

Alph

a 

L'Beta 

Chi-

Squar

e 

Pr > Chi

Sq 

Confidence 

Limits 

Confidence 

Limits 

Likelihood vs 

Consequence 

0.8848 0.804

3 

0.934

9 

2.0386 0.3190 0.05 1.413

5 

2.6637 40.85 <.0001 

Exp(Likelihood 

vs 

Consequence) 

      7.6799 2.4495 0.05 4.110

2 

14.349

9 

    

Smaller SD 0.6300 0.524

3 

0.724

6 

0.5323 0.2219 0.05 0.097

3 

0.9673 5.75 0.0165 

Exp(Smaller 

SD) 

      1.7028 0.3779 0.05 1.102

1 

2.6308     

Larger SD 0.8990 0.841

1 

0.937

4 

2.1861 0.2651 0.05 1.666

5 

2.7057 68.00 <.0001 

Exp(Larger SD)       8.9004 2.3595 0.05 5.293

6 

14.964

5 

    

Smaller vs 

Larger SD 

0.3624 0.264

8 

0.472

9 

-0.5650 0.2328 0.05 -

1.021

3 

-

0.1087 

5.89 0.0152 

Exp(Smaller vs 

Larger SD) 

      0.5684 0.1323 0.05 0.360

1 

0.8970     

 

 

 

Distance between Prediction and Central Tendency Point 

 

Full Model 

 

proc genmod data = Sym_exp.Data_dev descending; 

CLASS PartID Vis_type scenario_sd context Dev_Cut; 

model Dev_Cut = Vis_type|context|scenario_sd/ link = clogit dist = mult type3 wald ; 

repeated subject = PartID;  

run; quit; 
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Wald Statistics For Type 3 GEE Analysis 

Source DF Chi-Square Pr > ChiSq 

Vis_type 1 167.76 <.0001 

context 2 366.56 <.0001 

Vis_type*context 2 261.19 <.0001 

scenario_sd 1 232.64 <.0001 

Vis_type*scenario_sd 1 565.64 <.0001 

scenario_sd*context 2 102.64 <.0001 

Vis_ty*scenar*contex 1 3.96 0.0465 

 

Final Model 

 

proc genmod data = Sym_exp.Data_dev descending; 

CLASS PartID Vis_type scenario_sd context story2 Dev_Cut; 

model Dev_Cut = scenario_sd|context/ link = clogit dist = mult type3 wald ; 

repeated subject = PartID;  

 

estimate 'For Smaller SD: No Context vs. Consequence' Context 1 0 -1 scenario_sd*Context 1 0 -1 0 0 0/exp; 

estimate 'For Smaller SD: No Context vs. Likelihood' Context 1 -1 0 scenario_sd*Context 1 -1 0 0 0 0/exp; 

estimate 'For Smaller SD: Consequence vs. Likelihood' Context 0 -1 1 scenario_sd*Context 0 -1 1 0 0 0/exp; 

 

estimate 'For Larger SD: No Context vs. Consequence' Context 1 0 -1 scenario_sd*Context 0 0 0 1 0 -1/exp; 

estimate 'For Larger SD: No Context vs. Likelihood' Context 1 -1 0 scenario_sd*Context 0 0 0 1 -1 0/exp; 

estimate 'For Larger SD: Consequence vs. Likelihood' Context 0 -1 1 scenario_sd*Context 0 0 0 0 -1 1/exp; 

 

estimate 'For No Context: Smaller vs Larger SD' scenario_sd 1 -1 scenario_sd*Context 1 0 0 -1 0 0/exp; 

estimate 'For Consequence: Smaller vs Larger SD' scenario_sd 1 -1 scenario_sd*Context 0 0 1 0 0 -1/exp; 

estimate 'For Likelihood: Smaller vs Larger SD' scenario_sd 1 -1 scenario_sd*Context 0 1 0 0 -1 0/exp; 

run; quit; 

 

Analysis Of GEE Parameter Estimates 

Empirical Standard Error Estimates 

Parameter 

  

Estimate 

Standard 

Error 

95% Confidence 

Limits Z Pr > |Z| 

Intercept1     -2.5918 0.4190 -3.4131 -1.7706 -6.19 <.0001 

Intercept2     -0.9343 0.2950 -1.5126 -0.3561 -3.17 0.0015 
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Analysis Of GEE Parameter Estimates 

Empirical Standard Error Estimates 

Parameter 

  

Estimate 

Standard 

Error 

95% Confidence 

Limits Z Pr > |Z| 

Intercept3     1.0018 0.2686 0.4752 1.5283 3.73 0.0002 

scenario_sd 2   -1.1012 0.3487 -1.7847 -0.4178 -3.16 0.0016 

scenario_sd 5   0.0000 0.0000 0.0000 0.0000 . . 

context Baseline   -2.0076 0.4484 -2.8864 -1.1288 -4.48 <.0001 

context Likelihood   3.6646 0.4708 2.7419 4.5873 7.78 <.0001 

context Value   0.0000 0.0000 0.0000 0.0000 . . 

scenario_sd*context 2 Baseline -1.5855 1.1733 -3.8850 0.7141 -1.35 0.1766 

scenario_sd*context 2 Likelihood -2.5288 0.4354 -3.3823 -1.6754 -5.81 <.0001 

scenario_sd*context 2 Value 0.0000 0.0000 0.0000 0.0000 . . 

scenario_sd*context 5 Baseline 0.0000 0.0000 0.0000 0.0000 . . 

scenario_sd*context 5 Likelihood 0.0000 0.0000 0.0000 0.0000 . . 

scenario_sd*context 5 Value 0.0000 0.0000 0.0000 0.0000 . . 

Wald Statistics For Type 3 GEE Analysis 

Source DF Chi-Square Pr > ChiSq 

scenario_sd 1 43.45 <.0001 

context 2 116.71 <.0001 

scenario_sd*context 2 33.77 <.0001 
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Contrast Estimate Results 

Label 

Mean 

Estimat

e 

Mean 

L'Beta 

Estimat

e 

Standar

d 

Error 

Alph

a 

L'Beta 

Chi-

Squar

e 

Pr > ChiS

q 

Confidence 

Limits 

Confidence 

Limits 

For Smaller 

SD: No 

Context vs. 

Consequenc

e 

0.0268 0.003

6 

0.171

5 

-3.5931 1.0296 0.05 -

5.6111 

-

1.5750 

12.18 0.0005 

Exp(For 

Smaller SD: 

No Context 

vs. 

Consequenc

e) 

      0.0275 0.0283 0.05 0.0037 0.2070     

For Smaller 

SD: No 

Context vs. 

Likelihood 

0.0088 0.001

3 

0.058

6 

-4.7288 0.9960 0.05 -

6.6810 

-

2.7767 

22.54 <.0001 

Exp(For 

Smaller SD: 

No Context 

vs. 

Likelihood) 

      0.0088 0.0088 0.05 0.0013 0.0622     

For Smaller 

SD: 

Consequenc

e vs. 

Likelihood 

0.2431 0.146

8 

0.374

8 

-1.1358 0.3184 0.05 -

1.7599 

-

0.5116 

12.72 0.0004 

Exp(For 

Smaller SD: 

Consequenc

e vs. 

Likelihood) 

      0.3212 0.1023 0.05 0.1721 0.5995     

For Larger 

SD: No 

Context vs. 

Consequenc

e 

0.1184 0.052

8 

0.244

4 

-2.0076 0.4484 0.05 -

2.8864 

-

1.1288 

20.05 <.0001 

Exp(For 

Larger SD: 

No Context 

      0.1343 0.0602 0.05 0.0558 0.3234     
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Contrast Estimate Results 

Label 

Mean 

Estimat

e 

Mean 

L'Beta 

Estimat

e 

Standar

d 

Error 

Alph

a 

L'Beta 

Chi-

Squar

e 

Pr > ChiS

q 

Confidence 

Limits 

Confidence 

Limits 

vs. 

Consequenc

e) 

For Larger 

SD: No 

Context vs. 

Likelihood 

0.0034 0.001

3 

0.009

0 

-5.6722 0.4944 0.05 -

6.6412 

-

4.7032 

131.64 <.0001 

Exp(For 

Larger SD: 

No Context 

vs. 

Likelihood) 

      0.0034 0.0017 0.05 0.0013 0.0091     

For Larger 

SD: 

Consequenc

e vs. 

Likelihood 

0.0250 0.010

1 

0.060

5 

-3.6646 0.4708 0.05 -

4.5873 

-

2.7419 

60.59 <.0001 

Exp(For 

Larger SD: 

Consequenc

e vs. 

Likelihood) 

      0.0256 0.0121 0.05 0.0102 0.0644     

For No 

Context: 

Smaller vs 

Larger SD 

0.0638 0.007

9 

0.367

7 

-2.6867 1.0942 0.05 -

4.8314 

-

0.5420 

6.03 0.0141 

Exp(For No 

Context: 

Smaller vs 

Larger SD) 

      0.0681 0.0745 0.05 0.0080 0.5816     

For 

Consequenc

e: Smaller vs 

Larger SD 

0.2495 0.143

7 

0.397

0 

-1.1012 0.3487 0.05 -

1.7847 

-

0.4178 

9.97 0.0016 

Exp(For 

Consequenc

      0.3325 0.1159 0.05 0.1678 0.6585     
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Contrast Estimate Results 

Label 

Mean 

Estimat

e 

Mean 

L'Beta 

Estimat

e 

Standar

d 

Error 

Alph

a 

L'Beta 

Chi-

Squar

e 

Pr > ChiS

q 

Confidence 

Limits 

Confidence 

Limits 

e: Smaller vs 

Larger SD) 

For 

Likelihood: 

Smaller vs 

Larger SD 

0.0258 0.015

0 

0.044

1 

-3.6301 0.2823 0.05 -

4.1833 

-

3.0769 

165.40 <.0001 

Exp(For 

Likelihood: 

Smaller vs 

Larger SD) 

      0.0265 0.0075 0.05 0.0152 0.0461     

 

 

Confidence in Predictions 

 

Full Model 

 

proc mixed data = Sym_exp.Data; 

CLASS PartID Vis_type scenario_sd context story2; 

model Est_conf = Vis_type|scenario_sd|context/ ddfm=satterth RESIDUAL solution outp = res; 

run; quit; 

 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

Vis_type 1 936 5.14 0.0236 

scenario_sd 1 936 4.13 0.0425 

Vis_type*scenario_sd 1 936 2.87 0.0908 

context 2 936 0.14 0.8715 

Vis_type*context 2 936 0.28 0.7589 

scenario_sd*context 2 936 0.05 0.9509 

Vis_ty*scenar*contex 2 936 0.43 0.6534 
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Final Model 

 

proc mixed data = Sym_exp.Data; 

CLASS PartID Vis_type scenario_sd context story2; 

model Est_conf = Vis_type|scenario_sd context/ ddfm=satterth RESIDUAL solution outp = res; 

repeated / subject = PartID type = cs; 

estimate 'Smaller SD Median' intercept 1 Vis_type 1 0 scenario_sd 1 0 Vis_type*scenario_sd 1 0 0 0 /cl; 

estimate 'Larger SD Median' intercept 1 Vis_type 1 0 scenario_sd 0 1  Vis_type*scenario_sd 0 1 0 0 /cl; 

estimate 'For Smaller SD: Median vs. Boxplot' Vis_type 1 -1 Vis_type*scenario_sd 1 0 -1 0 /cl; 

estimate 'For Larger SD: Median vs. Boxplot' Vis_type 1 -1 Vis_type*scenario_sd 0 1 0 -1 /cl; 

estimate 'For Median-only: Smaller SD vs. Larger SD' scenario_sd 1 -1 Vis_type*scenario_sd 1 -1 0 0 /cl; 

estimate 'For Boxplot: Smaller vs. Larger SD' scenario_sd 1 -1 Vis_type*scenario_sd 0 0 1 -1 /cl; 

estimate 'Smaller SD Median vs. Larger SD Boxplot' Vis_type 1 -1 scenario_sd 1 -1 Vis_type*scenario_sd 1 0 0 -1 / 

cl; 

run; quit; 

 

Solution for Fixed Effects 

Effect Vis_type context 

scenario_s

d 

Estimat

e 

Standar

d 

Error DF 

t Valu

e 

Pr > 

|t| 

Intercept       53.7764 2.2819 11

3 

23.57 <.000

1 

Vis_type Central_Tendenc

y 

    5.7342 1.1991 86

4 

4.78 <.000

1 

Vis_type Quantiles     0 . . . . 

scenario_sd     2 5.3924 1.1991 86

4 

4.50 <.000

1 

scenario_sd     5 0 . . . . 

Vis_type*scenario_

sd 

Central_Tendenc

y 

  2 -4.9030 1.6957 86

4 

-2.89 0.003

9 

Vis_type*scenario_

sd 

Central_Tendenc

y 

  5 0 . . . . 

Vis_type*scenario_

sd 

Quantiles   2 0 . . . . 

Vis_type*scenario_

sd 

Quantiles   5 0 . . . . 

context   Baseline   -0.1424 1.0384 86

4 

-0.14 0.891

0 
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Solution for Fixed Effects 

Effect Vis_type context 

scenario_s

d 

Estimat

e 

Standar

d 

Error DF 

t Valu

e 

Pr > 

|t| 

context   Likelihoo

d 

  0.7247 1.0384 86

4 

0.70 0.485

4 

context   Value   0 . . . . 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

Vis_type 1 864 14.99 0.0001 

scenario_sd 1 864 12.03 0.0005 

Vis_type*scenario_sd 1 864 8.36 0.0039 

context 2 864 0.40 0.6698 

Estimates 

Label Estimate 

Standard 

Error DF t Value 

Pr > 

|t| Alpha Lower Upper 

Smaller SD Median 60.1941 2.2017 98.6 27.34 <.0001 0.05 55.8252 64.5630 

Larger SD Median 59.7046 2.2017 98.6 27.12 <.0001 0.05 55.3358 64.0735 

For Smaller SD: Median vs. 

Boxplot 

0.8312 1.1991 864 0.69 0.4884 0.05 -1.5222 3.1847 

For Larger SD: Median vs. 

Boxplot 

5.7342 1.1991 864 4.78 <.0001 0.05 3.3807 8.0876 

For Median-only: Smaller SD 

vs. Larger SD 

0.4895 1.1991 864 0.41 0.6832 0.05 -1.8640 2.8429 

For Boxplot: Smaller vs. Larger 

SD 

5.3924 1.1991 864 4.50 <.0001 0.05 3.0390 7.7458 

Smaller SD Median vs. Larger 

SD Boxplot 

6.2236 1.1991 864 5.19 <.0001 0.05 3.8702 8.5771 
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Appendix H – Prediction Strategy Tables for Chapter 7 

Table 8: Percentage of participants who rated their predictions to be an Optimistic (O), 

Average (A), or Pessimistic (P) case for each of the 10 prediction strategies for symmetric 

historical data distributions 

No Context Other 

Median-only: O: 15% A:68% P: 19% 

Boxplot: O: 7% A: 81% P: 11% 

Prediction Location 

Below Median Above 

P
re

d
ic

ti
o
n

 P
ro

b
a

b
il

it
y
 

>50% 

Median-only:  

O: 60% A:40% P: 0% 

Boxplot:  

O: 20% A: 80% P: 0% 

Median-only:  

O: 0% A:100% P: 0% 

Boxplot:  

O: 0 A: 100% P: 0% 

Median-only:  

O: 0% A:29% P: 71% 

Boxplot:  

O: 0% A: 29% P: 71% 

50%  

Median-only:  

O: 0% A:100% P: 0% 

Boxplot:  

O: 3% A: 97% P: 0% 

 

<50%  

Median-only:  

O: 0% A:100% P: 0% 

Boxplot:  

O: 0% A: 100% P: 0% 

 

Consequence Other 

Median-only: O: 53% A:33% P: 13% 

Boxplot: O: 56% A: 31% P: 13% 

Prediction Location 

Below Median Above 

P
re

d
ic

ti
o
n

 P
ro

b
a
b

il
it

y
 

>50% 

Median-only:  

O: 83% A:17% P: 0% 

Boxplot:  

O: 50% A: 33% P: 17% 

Median-only:  

O: 26% A:62% P: 12% 

Boxplot:  

O: 25 A: 50% P: 25% 

Median-only:  

O: 0% A:33% P: 67% 

Boxplot:  

O: 11% A: 11% P: 78% 

50%  

Median-only:  

O: 0% A:88% P: 12% 

Boxplot:  

O: 3% A: 75% P: 25% 

 

<50% 

Median-only:  

O: 83% A:17% P: 0% 

Boxplot:  

O: 50% A: 33% P: 17% 

Median-only:  

O: 0% A:100% P: 0% 

Boxplot:  

O: 0% A: 100% P: 0% 

 

Likelihood Other 

Median-only: O: 26% A:41% P: 33% 

Boxplot: O: 19% A: 56% P: 26% 

Prediction Location 

Below Median Above 

P
re

d
ic

ti

o
n

 

P
ro

b
a
b

i

li
ty

 

>50%   

Median-only:  

O: 22% A:33% P: 44% 

Boxplot:  

O: 22% A: 25% P: 53% 
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50% 

Median-only:  

O: 0% A:100% P: 0% 

Boxplot:  

O: 0% A: 100% P: 0% 

 

Median-only:  

O: 0% A:100% P: 0% 

Boxplot:  

O: 0% A: 100% P: 0% 

<50%   

Median-only:  

O: 8% A:67% P: 25% 

Boxplot:  

O: 0% A: 58% P: 42% 

Table 9: Percentage of participants who rated their predictions to be an Optimistic (O), 

Average (A), or Pessimistic (P) case for each of the 10 prediction strategies for the Median-

only visualization for right-skewed historical data distributions 

No Context Other 

Median-only: O: 21% A: 55% P: 24% 

Prediction Location 

Below Median Above 

P
re

d
ic

ti
o
n

 

P
ro

b
a
b

il
it

y
 

>50% 
Median-only:  

O: 0% A: 0% P: 100% 

Median-only:  

O: 0% A: 90% P: 10% 

Median-only:  

O: 50% A: 0% P: 50% 

50%  
Median-only:  

O: 0% A: 96% P: 4% 

Median-only:  

O: 0% A: 100% P: 0% 

<50% 
Median-only:  

O: 0% A: 100% P: 0% 

Median-only:  

O: 0% A: 100% P: 0% 
 

Consequence Other 

Median-only: O: 36% A: 30% P: 34% 

Prediction Location 

Below Median Above 

P
re

d
ic

ti
o

n
 

P
ro

b
a

b
il

it
y
 

>50% 
Median-only:  

O: 33% A: 17% P: 50% 

Median-only:  

O: 25 A: 50% P: 25% 

Median-only:  

O: 17% A: 50% P: 33% 

50% 
Median-only:  

O: 0% A: 100% P: 0% 

Median-only:  

O: 17% A: 67% P: 17% 

Median-only:  

O: 0% A: 100% P: 0% 

<50%  

Median-only:  

O: 0% A: 100% P: 0% 

Median-only:  

O: 50% A: 50% P: 0% 

Likelihood Other 

Median-only: O: 19% A: 50% P: 31% 

Prediction Location 

Below Median Above 
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P
re

d
ic

ti
o

n
 

P
ro

b
a

b
il

it
y
 

>50% 
Median-only:  

O: 0% A: 100% P: 0% 

Median-only:  

O: 0% A: 100% P: 0% 

Median-only:  

O: 7% A: 32% P: 61% 

50%  
Median-only:  

O: 0% A: 100% P: 0% 

Median-only:  

O: 0% A: 67% P: 33% 

<50% 
Median-only:  

O: 0% A: 100% P: 0% 
 

Median-only:  

O: 25% A: 38% P: 38% 

Table 10: Percentage of participants who rated their predictions to be an Optimistic (O), 

Average (A), or Pessimistic (P) case for each of the 10 prediction strategies for the Boxplot 

visualization for right-skewed historical data distributions 

No Context Other 

Boxplot: O: 17% A: 67% P: 17% 

Prediction Location 

Below Median Above 

P
re

d
ic

ti
o
n

 

P
ro

b
a
b

il
it

y
 >50%  

Boxplot:  

O: 0% A: 100% P: 0% 

Boxplot:  

O: 6% A: 65% P: 29% 

50%  
Boxplot:  

O: 6% A: 82% P: 12% 

Boxplot:  

O: 0% A: 0% P: 100% 

<50% 
Boxplot:  

O: 0% A: 100% P: 0% 

Boxplot:  

O: 0% A: 100% P: 0% 

Boxplot:  

O: 0% A: 100% P: 0% 

Consequence Other 

Boxplot: O: 32% A: 41% P: 27% 

Prediction Location 

Below Median Above 

P
re

d
ic

ti
o
n

 

P
ro

b
a
b

il
it

y
 >50% 

Boxplot:  

O: 33% A: 17% P: 50% 

Boxplot:  

O: 25 A: 50% P: 25% 

Boxplot:  

O: 16% A: 37% P: 47% 

50% 
Boxplot:  

O: 0% A: 100% P: 0% 

Boxplot:  

O: 0% A: 100% P: 0% 

Boxplot:  

O: 0% A: 100% P: 0% 

<50% 
Boxplot:  

O: 100% A: 0% P: 0% 

Boxplot:  

O: 0% A: 100% P: 0% 

Boxplot:  

O: 100% A: 0% P: 0% 

Likelihood Other 

Boxplot: O: 24% A: 32% P: 44% 

Prediction Location 

Below Median Above 

P
re

d
ic

ti
o

n
 

P
ro

b
a

b
il

it
y
 >50% 

Boxplot:  

O: 0% A: 100% P: 0% 

Boxplot:  

O: 0% A: 100% P: 0% 

Boxplot:  

O: 8% A: 30% P: 62% 

50%   
Boxplot:  

O: 17% A: 67% P: 17% 

<50% 
Boxplot:  

O: 0% A: 100% P: 0% 
 

Boxplot:  

O: 13% A: 62% P: 25% 
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Appendix I – Skewed Distribution Study (Chapter 7) 

Methods 

Experiment Design 

Experiment 2 used the same experimental design as Experiment 1 (Table 3), with context 

information, visualization type, and variability magnitude as the independent variables, as well 

as the same experimental tasks. The major difference was the use of skewed distributions instead 

of symmetric distributions for the underlying historical data. 

Six datasets were created from Burr Type XII distribution using R’s actuar package, with shape 

parameters 0.74, 6.0, and a scale parameter of 37. Each of the datasets consisted of 50 

observations that were evenly spaced throughout the distribution (e.g., 1st, 3rd, 5th... 99th 

percentile values of the distribution), but were then rounded to the nearest half minute. The Burr 

Type XII distribution has been used to model travel time distributions (Guessous, Aron, Bhouri, 

& Cohen, 2014), and the distribution parameters were fit to historical medical transport data in 

order to produce distribution shapes that were realistic for the task. The distribution was 

normalized and then transformed to create datasets with either a SD of 2 minutes or 5 minutes. 

The means of the distributions varied between 18 and 28. This procedure produced 6 datasets 

that were right skewed; with datasets with the smaller SD having skewness scores of 1.6 and 

kurtosis scores of 3.5, and datasets with the larger SD having skewness scores of 1.5 and kurtosis 

scores of 3.3.  

Participants 

An additional 110 potential participants were recruited using the paid screening questionnaire on 

MTurk, of which 86 qualified and were invited to participate in the study along with participants 

who had qualified from the previous screening questionnaire but had not participated in 

Experiment 1. The screening questionnaire took approximately 15 minutes and participants were 

compensated US$1.5 for filling out the screening questionnaire. 

Eighty-six participants completed the experiment, but the data from seven participants were 

removed due to incomplete or abnormal response behavior during the experiment. The remaining 

79 participants’ data were used for analysis (50 male, 29 female, mean age = 35.2 years, SD = 
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9.1 years). Participants scored an average of 88% (SD = 10%) on the screening questionnaire. 

The majority of participants reported completing post-secondary education (n=55), with 36 

participants taking at least one probability or statistics course at the post-secondary level, and 21 

additional participants reported taking a course at the high school level. The experiment took 45 

minutes and participants were compensated US$8.5. 

Hypotheses 

It was hypothesized that when participants are able to see the skewed underlying distributions 

(e.g., in the Boxplot condition), participants would be more likely to choose predictions that are 

away from the presented central tendency point, in the direction of the skewed distribution.  

Results on Prediction Behavior 

Predictions on the Salient Central Tendency Point 

For predictions made using the Median-only visualization, where participants were not aware of 

the skewness of the underlying data, participants showed similar rates of using the salient central 

tendency point of the visualization (i.e., the median) as with the symmetric historical data in 

Experiment 1; 75% of predictions made with no-information, 34% of predictions made with 

consequence-information, and just 2% of predictions made using likelihood-information were on 

the saliently presented central tendency point of the visualizations (i.e. the median). For 

predictions made using the Boxplot visualization, 46% of predictions made with no-information, 

23% of predictions made with consequence-information, and 3% of predictions made using the 

likelihood-information were on the salient central tendency point.  

A logistic regression analysis found that the interaction between context and visualization was 

significant, χ2(2)= 12.45, p=.002, as was the interaction between visualization type and 

variability magnitude, χ2(1)= 5.11, p=.02, and the main effect of context, χ2(2)= 87.93, p<.0001. 

The regression model confirmed that when participants could see the skewed distributions in the 

Boxplot visualization condition, they were less likely to choose the central tendency point as 

their prediction, and this affect occurred across all three context conditions. Furthermore, it 

appeared that the influence of the skewed distributions was strongest in the no-information 

condition. 
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Direction of Predictions relative to the Salient Central Tendency Point 

For trials where the predictions deviated from the salient central tendency point, 78% of the 

predictions were above the median (Figure 26). A logistic regression analysis found that the 

main effects of context, χ2(2)= 32.1, p<.0001, visualization type, χ2(1)= 8.8, p=.003, and 

variability magnitude, χ2(1)= 11.7, p=.0006, were significant. The results showed that the 

Median-only visualization resulted in fewer predictions above the central tendency point than the 

Boxplot visualization (OR: 0.5, 95% CI: 0.4-0.8), providing further evidence that the skewness 

and shape of the underlying distribution plays a role in how participants choose their prediction. 

Otherwise, the influence of variability magnitude and context were similar to those found in 

Experiment 1. 

 

 

Figure 26: Percentage of trials with predictions above the salient central tendency point as 

opposed to below for right-skewed distributions 

Distance between Prediction and the Salient Central Tendency Point 

For predictions that were not on the salient central tendency point, the distance between the 

prediction and the salient central tendency point was divided into 4 levels with roughly equal 

numbers of observations: between 0.5 and 1 (n=242), between 1 and 2 (n=170), between 2 and 4 

(n=94), and greater than 4 (n=135) minutes; the binning was performed because the data was 
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highly non-normal. Figure 27 shows the number of predictions within each category across the 

different variability magnitude and context conditions.  

 

Figure 27: Number of predictions within each distance category for each level of variability 

magnitude and context information with the Median-only visualization (left) and the 

Boxplot visualization (right) for right-skewed distributions 

An ordered logistic regression analysis found that the interaction between context and variability 

magnitude of the dataset was significant, χ2(2)=20.7, p<.0001, the interaction between 

visualization type and variability magnitude, χ2(1)=14.2, p=.0002, as were the main effects of 

visualization type, χ2(1)=6.2, p=.01, context information, χ2(2)= 100.4, p<.0001, and variability 

magnitude of the dataset, χ2(1)= 82.9, p<.0001. Trials with smaller SD tended to result in 

predictions closer to the median than trials with larger SD for the no-information (OR: 0.07, 95% 

CI: 0.01, 0.58), consequence-information (OR: 0.33, 95% CI: 0.17, 0.66), and likelihood-

information (OR: 0.03, 95% CI: 0.02, 0.05) conditions. The skewed distributions resulted in 
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differences between the Median-only and Boxplot visualizations which were not found in 

Experiment 1. For the larger SD condition, predictions made with the Boxplot visualization were 

more likely to be further away from the median than predictions made with the Median-only 

visualization. However, in the smaller SD condition, there was no difference between the two 

visualizations. As expected, within the two visualization conditions, predictions made with larger 

SD datasets were more likely to be further away from the median than predictions made with 

smaller SD datasets. Otherwise, results were similar to those found in Experiment 1. 

Confidence in Predictions 

A linear mixed analysis showed that only the main effects of visualization type, χ2(1)= 11.3, 

p=.0008, and variability magnitude, χ2(1)= 21.8, p<.0001, were significant. The Median-only 

visualization resulted in higher confidence than the Boxplot visualization (Δ= 3.1, 95% CI: 1.3-

4.9), and smaller SD datasets resulted in higher confidence than larger SD datasets (Δ= 4.3, 95% 

CI: 2.5-6.1). Unlike in Experiment 1, the interaction between visualization type and variability 

magnitude was not significant, χ2(1)= 2.9, p=.09, however, the general trend of the results were 

similar to those found in Experiment 1. 

Prediction Behavior 

Overall, participants’ prediction behaviors were similar to those found with the symmetric 

distributions in terms of the influence of contextual information and variability magnitude. 

However, it appeared that the skewed distributions had a large influence on prediction behavior 

between the two visualizations. Prediction behavior in the Median-only visualization appeared to 

be similar to prediction behavior with symmetric distributions. The Boxplot visualization, 

however, resulted in a greater number of predictions away from the central tendency as was 

hypothesized. Furthermore, the influence of the skewed distributions (i.e., the Boxplot 

visualization) appeared to be greatest in the no-information condition.  

Results on Prediction Strategy 

Probability Rating and Prediction Location 
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Figure 28 provides an overview of prediction strategies by presenting the location of 

participants’ predictions relative to the salient central tendency point (i.e., the median) and their 

probability ratings. The figure illustrated the influence of the right-skewed distributions on 

predictions made with the Boxplot visualization. Within each of the three context conditions, 

each participant was assigned to nine different strategy categories based on these two 

dimensions: location with respect to central tendency (below, on, above) x probability rating 

(below 50%, 50%, above 50%). For a context condition, participants were assigned into one of 

these nine categories which represented the majority of their predictions. The breakdown is 

presented in Table 11. When there was no majority, the participant was assigned to a tenth 

category (labeled “Other” in Table 11).  

 

Figure 28: Predictions made by participants assessed across two dimensions: their location 

relative to the salient central tendency point and the prediction probability for right-

skewed distributions 
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Table 11: Participant prediction strategies across the three context conditions. The strategy 

used by the plurality of participants is bolded. 

 

Median-only No-context 

Other = 33 

Consequence 

Other = 53 

Likelihood 

Other = 32 

Prediction Location 

Below Median Above Below Median Above Below Median Above 

P
re

d
ic

ti
o

n
 

P
ro

b
a

b
il

it
y
 >50% 1 10 2 4 4 6 1 0 28 

50% 0 25 1 2 6 0 0 1 6 

<50% 1 6 0 0 2 2 3 0 8 

 

Boxplot No-context 

Other = 30 

Consequence 

Other = 41 

Likelihood 

Other = 25 

Prediction Location 

Below Median Above Below Median Above Below Median Above 

P
re

d
ic

ti
o
n

 

P
ro

b
a
b

il
it

y
 >50% 0 5 17 6 4 19 1 1 37 

50% 0 17 1 1 3 1 0 0 6 

<50% 1 4 4 1 1 2 1 0 8 

As expected, the results provide evidence that the use of skewed-distributions with the Boxplot 

visualization shifted the prediction strategies used by participants in the direction of the skew, 

and this effect was strong for both the no-information and consequence-information conditions. 

In particular, the number of participants who used Strategy-2 (i.e., Above Median and >50%) 

was much higher for the Boxplot than the Median-only visualization. The majority of the 

participants within this strategy category specified that their prediction was an average case 

(Table 12) in the post-experiment questionnaire for the no-information condition, providing 

evidence that participants used the skewness information to locate an alternative central tendency 

measure (e.g., the mean).  



185 

 

Table 12: The type of prediction indicated by the majority of participants within each 

strategy category: optimistic (Opt), average (Ave), or pessimistic (Pes). 

Boxplot No-context 

Other = Ave 

Consequence 

Other = Opt 

Likelihood 

Other = Ave 

Prediction Location 

Below Median Above Below Median Above Below Median Above 

P
re

d
ic

ti
o

n
 

P
ro

b
a

b
il

it
y
 >50% 0 Ave Ave Pes Ave Pes Ave Ave Pes 

50% 0 Ave Pes Ave Ave Ave 0 0 Ave 

<50% Ave Ave Ave Opt Ave Opt Ave 0 Ave 

Self-Reported Impact of Contextual Information on Prediction Behavior 

Participants self-reported evaluations of the impact of the consequence and likelihood context 

information revealed similar results as those found for symmetric distributions (Table 13). No 

evidence was found for differences between the two visualization conditions. 

Table 13: Number of participants who reported that they agreed with a statement that the 

additional information provided by the two context conditions impacted their time 

predictions for right-skewed distributions 

 Strongly 

Disagree 

Disagree Neutral Agree Strongly 

Agree 

Total 

Consequence 
Median-only 3 6 4 35 31 79 

Boxplot 3 5 3 30 38 79 

Likelihood 
Median-only 0 0 2 25 52 79 

Boxplot 0 1 1 29 48 79 

 


