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Driving simulator studies are usually designed to collect repeated measures on each participant. This design 

has different implications for the power of within and between-subject effects that needs to be recognized 

by researchers.  The power for between-subject variables decreases when additional measures are collected 

on the within-subject variables. However, the power for the main and interaction effects of the within-

subjects variables increases as more observations are collected on one participant. If the main interest of the 

experiment is a between-subject effect, such as age, then a completely randomized design can provide the 

same power with fewer participants. Through a case study, this paper demonstrates how the power changes 

between a repeated measures design and a completely randomized design. 
 

 

 

INTRODUCTION  

 
Driving simulators are widely used in human factors and 

transportation research to explore issues in driving behavior, 

such as the assessment of driving performance given medical 

impairments (Findley et al., 1989; Rizzo, McGehee, Dawson, 

& Anderson, 2001), age effects (Brouwer, Waterink, Van 

Wolffelaar, & Rothergatter, 1991; Syzlek et al., 1995), and the 
design of new transportations systems ranging from roadway 

infrastructure to in-vehicle systems (Boyle & Mannering, 

2004; Donmez, Boyle, & Lee, in press).  

Like much behavioral research, an important issue with 

driving simulator studies is the limited number of power 

analyses that appear to be performed or reported (Cohen, 

1990). Power analyses are important because they are needed 

to determine the sample size required to detect an effect before 

a study is conducted; to obtain the power of a study that was 

already conducted; and to assess the size of effect that could 

be reliably detected by a particular study. Power analysis can 

be performed a priori and post-hoc. A priori power analysis 
would lead to a better designed experiment by determining the 

number of subjects needed to obtain statistically significant 

results if there is an effect. A priori analysis requires estimated 

variances that would result from the experiment. Therefore, 

this analysis is approximate but very useful in determining the 

number of subjects required before a study begins. Generally, 

80% power is targeted in determining the sample size. Power 

of 80% means that rejecting the null when there is an effect is 

four times more likely than not rejecting. Larger power is of 

course desirable, but the rate of increase in power for each 

additional participant is low when the power is large. 
Therefore, the benefit of the additional power over 80% 

usually does not match the cost of the additional participants. 

Post-hoc analysis can be performed to assess if the non-

significance is due to lack of power and can provide insights 

on the experimental results. Further detail on performing 

power analysis can be found in Cohen (1988) and Murphy & 

Myors (2004). Surprisingly few researchers consider statistical 

power or effect sizes in reporting statistical results, a 

phenomenon that can undermine the ability of other 

researchers to properly interpret experimental results (Meehl, 
1978; Vicente & Torenvliet, 2000). 

Driving simulator experiments are generally designed as 

repeated measures studies where one subject goes through 

different experimental conditions (Horrey & Wickens, 2004; 

Rizzo et al., 2001; Tsimhoni & Green, 2001). Alternatively, in 

a completely randomized design, one subject would only be 

placed in one experimental condition. Compared to 

completely randomized design, repeated measures provide 

many advantages. For example, repeated measures design 

requires fewer participants and also increases the power of 

repeated variables by decreasing the error variance for these 

terms (Bradley & Russell, 1998; Murphy & Myors, 2004). 
Despite its many advantages, repeated measures experimental 

designs are more complex. When compared to the completely 

randomized design, repeated measures design requires more 

participants to provide the same power to test the between-

subject effects.  

It is important to design an experiment with the scientific 

question in mind. If the between-subject variable is of crucial 

interest to the experiment then a repeated measures design is 

not the best experimental design. Such a research question 

benefits from a completely randomized design. However, if 

the primary research question concerns the effects of the 
within-subject variable and how these effects change with 

different levels of the between-subject variable (i.e. interaction 
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term) then a repeated measures design provides similar power 

with fewer participants. Through a case study, this paper 

demonstrates how the experimental power differs for a 

repeated measures design compared to a completely 

randomized design. The statistical techniques applied in this 

case study are not novel by any means. However, as 
mentioned above few researchers consider power in reporting 

their results, not providing information to suggest that a power 

analysis was even conducted. Therefore, this case study aims 

to demonstrate how the design choice (i.e. repeated measures 

vs. completely randomized design) and the associated power 

affect experimental results and are very important to consider. 

This paper illustrates the power implications associated with 

common experimental designs employed in human factors 

research. Specifically the advantages and disadvantages 

associated with repeated measures design is demonstrated.  

 

METHOD 
 

The power of an F-test for analysis of variance increases 

with increasing sample size, significance level and treatment 

effects, and decreasing experimental error (Bradley & Russell, 

1998; Cohen, 1988). However, the experimental design can 

also affect the power of F-tests performed on treatments. As 

mentioned in the introduction, repeated measures designs have 

both negative and positive impacts on experimental power. 

The measures collected on the between-subject variables are 

often correlated. As correlated measures are collected, the 

error variance for the within-subject variables and the 
interaction term decreases. This is due to the estimation and 

removal of systematic subject effects that are treated as 

sources of variation rather than as error. Also, when compared 

to a completely randomized design, there are fewer error 

degrees of freedom for the within-subject variable and the 

interaction term. Therefore, repeated measures design 

increases the power for the main and interaction effects for the 

within-subject variables. However, the inclusion of repeated 

measures increases the error variance of the between-subject 

terms, degrading the power for these terms.  

If the treatment effects are assumed to be the same, the 

relationship between the effect size of a completely 
randomized design of two factors, A (having p levels) and B 

(having q levels), and the effect sizes of a repeated measures 

design with A as the between-subject and B as the within-

subject variable are (equations are from Bradley & Russell 

(1998)):  
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where  f: effect size, RP: Repeated measures design, CR: 

completely randomized design, and ρ: correlation between 
repeated measures.  

 

Case Study 
 

This paper presents a case study based on a driving 

simulator experiment that was conducted to assess the effects 
of driver distractions as well as the effectiveness of different 

distraction mitigation strategies. Details about the experiment 

can be found in Donmez et al. (in press). An overall summary 

of the methods and experimental design is provided to aid the 

reader with the definitions used in the results section. Data 

from sixteen middle-aged (range: 35 to 55; mean: 45, s.d.: 

17.1) and twelve older (range: 65 to 75; mean: 69, s.d.: 11.3) 

drivers were collected. The experiment was a 2x7 repeated 

measures design with age as a between-subject variable (2 

levels), and strategy as a within-subject variable (7 levels). 

The within-subject variable, strategy, included four different 
mitigation strategies and three baseline conditions.  

During each condition, participants were asked to follow 

a lead vehicle which braked periodically. Because minimum 

Time-to-collision (TTC) is an important measure in braking 

response, this variable is chosen to demonstrate power 

analysis for repeated measures design in simulator studies.  

TTC is defined as the distance between the participant and 

lead vehicles divided by the relative velocity (i.e., the time that 

a collision would occur if the vehicle were to proceed at 

constant speed). Minimum TTC is the shortest time-to-

collision during a braking event if the participant were to 

continue in the same path at the same velocity, thus, an 
increase in this variable would indicate a safety benefit.  

Therefore, minimum TTC has been proposed and used as a 

crash-avoidance metric in driving studies (Minderhoud & 

Bovy, 2001; Vogel, 2003) and is associated with the collision  

likelihood (Lee, McGehee, Brown, & Reyes, 2002).  

The results section presents the findings of the post-hoc 

power analysis conducted on minimum TTC for this repeated 

measures design. Using the same data and assuming that the 

treatment effects were the same, the power of a completely 

randomized 2 (age) x 7 (strategy) design was also calculated. 

For a completely randomized design, different people 
experience each treatment combination. This increases the 

error variance for the within-subject and the interaction terms, 

decreasing power. However, it also decreases the between-

subject variability and hence increases power for the between-

subject term. The following section demonstrates this effect.  

 

RESULTS 

 
Post-hoc power analysis was performed on the minimum 

TTC.  The correlation between repeated measures was 

moderate (ρ = 0.39). The power for the within-subject effect 

(strategy) and the interaction (age x strategy) was quite high 
(Table 1). As expected, these terms resulted in significant 

findings. However, for the main age effect, the power was 

very low. The lack of power may explain the non-significant 

result for this variable. For this experiment, the high power for 
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strategy and age x strategy and the low power for age was a 

tradeoff in power that was considered necessary based on the 

experimental objectives (Donmez et al., in press).  The 

experiment focused on how different strategies would affect 

driving performance and how different age groups will 

respond to these strategies (i.e. strategy and age x strategy 
interaction). The main factor of age, which assessed how 

middle-aged drivers’ driving differs from older drivers’ 

driving, was not the main focus of the study.  

 

Table 1. The overall statistical significance and power for 

minimum TTC for repeated measures design at α = 0.05 
 

 
Minimum TTC  

(for repeated measures design) 

 F-value p f  n' 1 − β  

Age F(1,26)=0.40 * 0.05 14 0.05 

Strategy F(6,138)=6.35  <0.05 0.50 21 0.99 
Age x 

Strategy F(6,138)=2.43 <0.05 0.30 21 0.77 

* not significant; f: effect size defined by Cohen (1988) 

 

Figure 1 shows how the power would change if the 

sample size in each age group was increased assuming that the 

effect sizes are constant. Increasing the sample size from 14 

drivers in each age group to 22 helps achieve almost 100% 

power for the age x strategy interaction. However, the power 

for the age factor is still very low even if the sample size in 

each age group is increased to 40, requiring a total of 80 

participants. This is a result of the very small effect size that is 
observed for the age factor. To obtain 80% power for age, 

with 14 subjects in each age group, an effect size of 0.55 is 

needed. 
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Figure 1. Power in repeated measures design as a function of 

sample size in each age group 

 

If this experiment was a completely randomized design 
with the same levels of age and strategy, then the power for 

age would have been larger than 0.05. Table 2 shows the 

power values for an identical completely randomized design, 

where the treatment effects are assumed to be in the same 

magnitude. Even when the completely randomized design uses 

192 participants (i.e. 7 x 28; 28 participants in each treatment 

group), the power of age x strategy is substantially lower than 

the power for the repeated measures design. The effects were 

assumed to be the same with the effects assessed in the 
repeated measures design for which the effect of age was 

extremely low. Therefore, the additional participants did not 

provide much of an increase in power for age in absolute 

terms (i.e. 0.03 increase in power), and thus the power for age 

is still low. However, in relative terms, there was a 60% 

relative increase from the power of repeated measures design 

(i.e. 0.05 to 0.08). This increase would have been more 

dramatic if the effect was larger.  

 

Table 2. The hypothetical power for minimum TTC if the 

experiment was a completely randomized design at α = 0.05 
(calculated using equation 1) 

 

 
Minimum TTC  

(for completely randomized design) 

 f  n' 1 − β  

Age 0.10 14 0.08 

Strategy 0.39 21 0.95 

Age x Strategy 0.23 21 0.51 

f: effect size defined by Cohen (1988) 

 

Figure 2 shows how power would change in this 

experiment as a function of correlation between repeated 

measures. The graph shows the power of main and interaction 

effects as the correlation between measures increases.  The 

power value for zero correlation (ρ = 0) is the power for an 
identical but completely randomized design. A dramatic 

change for age x strategy term is observed as the correlation 
increases. The power of strategy is high for the completely 

randomized design; therefore there is not much room for an 

increase in power.  
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Figure 2. Power in repeated measures design as a function of 
correlation between measures (calculated using equation 1) 

 



Published in HFES 2006 proceedings 

 

DISCUSSION 

 
Many driving simulator studies are repeated measures 

design with one or more between-subject factors (e.g. age, 

gender).  Repeated measures design is usually preferred 

because it is difficult to recruit and collect data from large 
number of participants. There is also great variability between 

drivers. Using a repeated measures design results in increased 

power for the within-subject variables and the corresponding 

interaction terms by decreasing their error variance. However, 

as the between-subject variable repeats the within-subject 

conditions, the error variance for the between-subject effect 

increases and thereby degrades the power for this main effect.  

There is a tradeoff in power which needs to be considered 

according to the objectives of the study. Without considering 

these objectives, one type of experimental design cannot be 

advocated over another.   

A priori power analysis should be performed to 
determine the sample size to achieve the desired power. To 

perform such analysis, the variances for random effects (e.g. 

subject, random error) should be estimated. One way to obtain 

these estimates is to use data from similar past experiments. 

With varying experiments and simulator types this can be a 

challenge. Another way to estimate variances is to run a pilot 

study. A pilot study can provide better estimates but would 

require extra time and resources. Therefore, there is a tradeoff 

between accuracy and resources. Moreover, increasing sample 

size increases power. However, the rate of increase in power 

for the additional samples does not always justify the cost of 
running more participants. This presents another tradeoff 

between power and resources.  

Using a case study, this paper demonstrates that a within-

subject variable and its interactions have substantially higher 

power than a between-subject variable. Due to time and 

resource constraints, driving simulator studies usually do not 

involve a large number of participants (Breckenridge & Dodd, 

1991; Brouwer et al., 1991; Reed & Green, 1999). It is likely 

that the between-subject terms in driving simulator studies that 

have repeated measures design will not generate significant 

results due to lack of power unless they have medium or large 

effect sizes. It is important to consider this artifact of repeated 
measures design in conducting driving simulator experiments.  

Neglecting this effect may lead researchers to mistakenly 

conclude that the between subject terms have little influence 

when in fact it is the opposite.  
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