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ABSTRACT 
Broad metric classes were proposed in the literature in order to 
facilitate metric selection for evaluating human-autonomous 
vehicle interaction. However, there still lacks a systematic method 
for selecting an efficient set of metrics from the many metrics 
available. We previously identified a list of evaluation criteria that 
can help determine the quality of a metric, and generated a list of 
potential metric costs and benefits. Depending on research 
objectives and limitations, these costs and benefits can have 
different weights of importance. Through an experiment with 
subject matter experts, we investigated which metric 
characteristics human factors practitioners consider to be 
important in evaluating human supervisory control of unmanned 
vehicles. We also tested two different multi-criteria decision 
making methods to help practitioners assign subjective weights to 
the cost/benefit criteria. The majority of participants rated the 
evaluation criteria used in both tools as very useful. However, the 
majority of participants’ metric selections before using the 
methods were the same as the suggestions provided by the 
methods. Since determining weights of metric importance is an 
inherently subjective process, even with objective computational 
tools, the real value of using such a tool may be reminding human 
factors practitioners of the important experimental criteria and 
relationships between these criteria that should be considered 
when designing an experiment. 

Categories and Subject Descriptors 
C.4 [Performance of Systems]: Measurement Techniques 
H.1.2 [User/Machine Systems]: Human Factors 
H.5.2 [User Interfaces]: Evaluation/methodology 

General Terms 
Measurement, Performance, Experimentation, Human Factors, 
Standardization, Theory. 

Keywords 
Metrics, Metric Quality, Human Supervisory Control, AHP, 

Analytic Hierarchy Process, Experiments. 

1. INTRODUCTION 
Human-automation teams are common in many domains, such as 
command and control operations, human-robot interaction, 
process control, and medicine. With high levels of automation, 
these teams operate under a supervisory control paradigm. 
Supervisory control occurs when one or more human operators 
intermittently program and receive information from a computer 
that then closes an autonomous control loop through actuators and 
sensors [1].  

A popular metric used to evaluate human-automation performance 
in supervisory control is mission effectiveness [2, 3]. Mission 
effectiveness focuses on performance as it relates to the final 
output produced by the human-automation team. However, this 
metric fails to provide insights into the process that leads to the 
final mission-related output. Measuring multiple human-computer 
system aspects, such as workload and usability can be valuable in 
diagnosing performance successes and failures, and in identifying 
effective training and design interventions. However, choosing an 
efficient set of metrics for a given experiment still remains a 
challenge. Many researchers select their metrics based on past 
experience. Another approach to metric selection is to collect as 
many measures as possible to supposedly gain a comprehensive 
understanding of the human-automation performance. These 
methods can lead to insufficient metrics, expensive 
experimentation and analysis, and the possibility of inflated type I 
errors. There appears to be a lack of a principled approach to 
evaluate and select an efficient set of metrics among the large 
number of available metrics. 

Different frameworks of metric classes are found in the literature 
in terms of human-autonomous vehicle interaction [4-7]. These 
frameworks categorize existing metrics into high-level metric 
classes that assess different aspects of the human-automation 
performance and are generalizable across missions. Pina et al. [5] 
defined five generalizable metric classes for supervisory control of 
unmanned vehicles: mission effectiveness, automation behavior 
efficiency, human behavior efficiency, human behavior 
precursors, and collaborative metrics. These metric classes can 
help experimenters select metrics that result in a comprehensive 
understanding of the human-autonomous vehicle performance, 
covering issues ranging from automation capabilities to human 
cognitive abilities. For holistic system assessment, a rule of thumb 
is to select at least one metric from each metric class. However, 
there is still a lack of a systematic methodology to select a 
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collection of metrics across these classes. Each metric set has 
advantages, limitations, and costs, thus the added value of 
different sets for a given context needs to be assessed to select an 
efficient set that maximizes value and minimizes cost.  

Donmez et al. [8] proposed a list of metric evaluation criteria for 
human supervisory control of unmanned vehicles: experimental 
constraints, comprehensive understanding, construct validity, 
statistical efficiency, and measurement technique efficiency. The 
following section briefly presents these categories. Detailed 
discussions and supervisory control metric examples can be found 
in [8-10]. 

2. METRIC EVALUATION CRITERIA 
2.1 Experimental Constraints 
Time and monetary cost associated with measuring and analyzing 
a specific metric constitute the main practical considerations for 
metric selection. Availability of temporal and monetary resources 
depends on the individual project and such factors are typically 
limiting in all projects. The stage of system development and the 
testing environment are additional constraints that can guide 
metric selection. For example, responses to rare events are more 
applicable for research conducted in simulated environments, 
whereas observational measures can provide better value in field 
testing. 

2.2  Comprehensive Understanding 
It is important to maximize the understanding gained from a 
research study. Given that it is often not possible to collect all 
required metrics, each metric should be evaluated based on how 
much it explains the phenomenon of interest or its coverage. For 
example, continuous measures of workload over time (e.g., pupil 
dilation) can provide a more comprehensive dynamic 
understanding of one aspect of a system compared to static, 
aggregate workload measures collected at the end of an 
experiment (e.g., subjective responses).  

The most important aspect of a study is finding an answer to the 
primary research question. The proximity of a metric to answering 
the primary research question defines the importance of that 
metric. For example, a workload measure may not tell much 
without a metric to assess mission effectiveness, which is what the 
system designers are generally most interested in understanding. 
Another characteristic of a metric that is important to consider is 
the amount of additional understanding gained using a specific 
metric when a set of metrics are collected. For example, a 
workload measure can provide additional insights into the human-
automation performance. 

In addition to providing additional understanding, another desired 
metric quality is its causal relations with other metrics. A better 
understanding can be gained if a metric can help explain other 
metrics’ outcomes. For example, the underlying reasons for an 
operator’s behavior and the final outcome of an event can be 
better understood if the initial conditions and operator’s state 
when the event occurs are also measured. When used as covariates 
in statistical analysis, the initial conditions of the environment and 
the operator can help explain the variability in other metrics of 
interest. Thus, in addition to human behavior, experimenters are 
encouraged to measure human behavior precursors [5] in order to 

assess the operator state and environmental conditions, which may 
influence human behavior. 

2.3  Construct Validity 
Construct validity refers to how well the associated measure 
captures the metric or construct of interest. For example, 
subjective measures of situational awareness ask participants to 
rate the amount of situational awareness they had on a given 
scenario or task. These measures are proposed to help in 
understanding participants’ situational awareness [11, 12]. 
However, self-ratings assess meta-comprehension rather than 
comprehension of the situation: it is unclear whether operators are 
aware of their lack of situational awareness.  

Good construct validity requires a measure to have high 
sensitivity to changes in the targeted construct. That is, the 
measure should reflect the change as the construct moves from 
low to high levels [13]. For example, primary task performance 
generally starts to break down when the workload reaches higher 
levels [13, 14], thus primary task performance measures are not 
sensitive to changes in the workload at lower workload levels. 

A measure with high construct validity should also be able to 
discriminate between similar constructs. An example measure that 
fails to discriminate two related metrics is galvanic skin response, 
which has been proposed and used to measure workload and 
stress levels (e.g., [15]). However, even if workload and stress are 
related, they still are two separate metrics. Therefore, galvanic 
skin response alone cannot suggest a change in workload. 

Good construct validity also requires the selected measure to have 
high inter- and intra-subject reliability. Inter-subject reliability 
requires the measure to assess the same construct for every 
participant, whereas intra-subject reliability requires the measure 
to assess the same construct if the measure were repeatedly 
collected from the same participant under identical conditions. 
For example, self-ratings are widely utilized for mental workload 
assessment [16, 17]. However, different individuals may have 
different interpretations of workload, leading to decreased inter-
subject reliability. Some participants may not be able to separate 
mental workload from physical workload [18], and some 
participants may report their peak workload, whereas others may 
report their average workload. Participants may also have recall 
problems if the subjective ratings are collected at the end of a test 
period, raising concerns on the intra-subject reliability of 
subjective measures. 

2.4 Statistical Efficiency 
There are three metric qualities that should be considered to 
ensure statistical efficiency: total number of measures collected, 
frequency of observations, and effect size. 

Analyzing multiple measures inflates type I error. That is, as more 
dependent variables are analyzed, finding a significant effect 
when there is none becomes more likely. The inflation of type I 
error due to multiple dependent variables can be handled with 
multivariate analysis techniques, such as Multivariate Analysis of 
Variance (MANOVA) [19]. However, it should be noted that 
multivariate analyses are harder to conduct, as researchers are 
more prone to include irrelevant variables in multivariate 
analyses, possibly hiding the few significant differences among 
many insignificant ones. The best way to avoid failure to identify 
significant differences is to design an effective experiment with 



the most parsimonious metric/measure set that specifically 
addresses the research question.  

Another metric characteristic that needs to be considered is the 
frequency of observations required for statistical analysis. 
Supervisory control applications require humans to be monitors of 
automated systems, with intermittent interaction, thus human 
monitoring efficiency is an important metric to measure. The 
problem with assessing monitoring efficiency is that, in most 
domains, errors or critical signals are rare, and operators can have 
an entire career without encountering them. For that reason, in 
order to have a realistic experiment, such rare events cannot be 
included in a study with sufficient frequency. Therefore, if a 
metric requires response to rare events, observed events with a 
low frequency of occurrence cannot be statistically analyzed 
unless data is obtained from a very large number of participants, 
such as in medical studies on rare diseases.  

The number of participants that can be recruited for a study is 
especially limited when participants are domain experts such as 
pilots. The power to identify a significant difference, when there 
is one, depends on the differences in the means of factor levels 
and the standard errors of these means, which constitute the effect 
size. One way to compensate for limited number of participants in 
a study is to use more sensitive measures that will provide a large 
separation between different conditions, that is, a high effect size.  

2.5 Measurement Technique Efficiency 
The data collection technique associated with a specific metric 
should not be intrusive to the participants or to the nature of the 
task. For example, eye trackers can be used for capturing 
operators’ visual attention (e.g., [20, 21]). However, head-
mounted eye trackers can be uncomfortable for the participants, 
and hence influence their responses. Wearing an eye-tracker can 
also lead to an unrealistic situation that is not representative of the 
task performed in the real world. 

The measuring technique itself can also interfere with the realism 
of the study. For example, off-line query methods are used to 
measure operators’ situational awareness [22], by briefly halting 
the experiment at randomly selected intervals, blanking the 
displays, and administering a battery of queries to the operators. 
The collection of the measure requires the interruption of the task 
in a way that is unrepresentative of real operating conditions. The 
interruption may also interfere with other metrics such as 
operator’s performance and workload, as well as other temporal-
based metrics. 

3. MULTI CRITERIA DECISION MAKING 
METHODS FOR METRIC SELECTION 
Donmez et al. [8] translated the above criteria into potential cost-
benefit parameters, which can be ultimately used to define cost 
and benefit functions of a metric set for a given experiment, eqn. 
(1). The breakdown between cost and benefit parameters are not 
clear cut, given that some criteria can be considered as a benefit or 
a cost (e.g., non-intrusiveness vs. intrusiveness to participants). 
The breakdown in [8] was based on the ability to assign a 
monetary cost to an item. 

 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑜𝑜𝐵𝐵 𝑚𝑚𝐵𝐵𝐵𝐵𝑚𝑚𝐵𝐵𝑚𝑚 𝐼𝐼 = ∑ 𝑊𝑊𝐵𝐵𝐵𝐵  × 𝑀𝑀𝐵𝐵𝐼𝐼𝐵𝐵𝑁𝑁𝐵𝐵
𝐵𝐵=1   where 

𝑊𝑊𝐵𝐵𝐵𝐵 : weight of importance for benefit criterion i 
𝑀𝑀𝐵𝐵𝐼𝐼𝐵𝐵 : how well metric I meets benefit criterion i  
𝑁𝑁𝐵𝐵: total number of benefit criteria 

(1) 
𝐶𝐶𝑜𝑜𝐶𝐶𝐵𝐵 𝑜𝑜𝐵𝐵 𝑚𝑚𝐵𝐵𝐵𝐵𝑚𝑚𝐵𝐵𝑚𝑚 𝐼𝐼 =  ∑ 𝑊𝑊𝐶𝐶𝑗𝑗  × 𝑀𝑀𝐶𝐶𝐼𝐼𝑗𝑗𝑁𝑁𝐶𝐶

𝑗𝑗=1           where 

𝑊𝑊𝐶𝐶𝑗𝑗 : weight of importance for cost criterion j 
𝑀𝑀𝐶𝐶𝐼𝐼𝑗𝑗 : how much metric I costs for cost criterion j 
𝑁𝑁𝐶𝐶: total number of cost criteria  
 

Depending on research objectives and limitations, the entries in 
the cost and benefit functions can have different weights of 
importance (i.e., WBi and WCj). Two promising techniques 
identified to help researchers assign subjective weights are the 
pair-wise comparison approach of the analytic hierarchy process 
(AHP) [23], and the ranking approach of the probability and 
ranking input matrix (PRIM) method [24]. Direct assignment of 
weights is not adopted as an alternative since humans have 
difficulty with absolute judgment and are better at making relative 
judgments [25]. Since the probability aspect of PRIM is not 
applicable to this effort, the method will be referred to as ranking 
input matrix (RIM) from this point on. 

AHP is widely used both in academic research and in the industry. 
It begins with the user building a decision hierarchy which 
includes the goals (e.g., identify metric benefits), decision 
alternatives (e.g., NASA TLX, pupil dilation), and criteria (e.g., 
non-intrusiveness, construct validity). There are no systematic 
guidelines for creating the hierarchy or identifying the decision 
alternatives and criteria. The hierarchies depend on user 
knowledge and experience.  

At each level of a hierarchy, AHP utilizes pair-wise comparisons 
to express the relative importance of one criterion over another. 
The relative importance is judged on a five point Likert scale with 
the end values of equally important and extremely more 
important. The values obtained from pair-wise comparisons are 
then used to create a weight matrix. The eigenvectors of this 
weight matrix correspond to the criteria weights of interest. There 
are disadvantages associated with AHP identified in the literature 
suggesting flaws in the methods of combining individual weights 
into composite weights [26, 27]. 

Another characteristic of AHP, potentially a user acceptance 
issue, is the consistency checks that are imposed on the user. AHP 
forces the user to perform all possible pairwise comparisons even 
if some of these comparisons are redundant. For example, if the 
user is comparing A, B, and C, then a comparison between A and 
B and a comparison between B and C would indicate how A and 
C would compare. Even if a comparison of A and C is redundant, 
AHP forces the user to perform it until a consistency criterion is 
met (consistency ratio ≤ 0.1 as suggested by [28]), with the claim 
that consistency checks help the user think about his ratings in 
detail. The consistency ratio criterion of 0.1 is an arbitrary cutoff 
but is the convention. The consistency ratio takes into account not 
only the directionality of the responses but also the magnitude. 
For example, when comparing A, B, and C, if the user indicates 
that both A and B are moderately more important than C, then he 
has to indicate that A and B are equally important. Rating A to be 
even slightly more important than B (or vice versa) would lead to 
a consistency ratio of 0.19 and would be considered incorrect by 



AHP. Thus, AHP does not always allow for finer grain 
comparisons. 

The ranking input matrix (RIM) is similar to more traditional 
engineering decision matrices such as the ones used in quality 
function deployment [29]. The RIM method allows people to 
categorically select weights through a direct perception-
interaction interface (Figure 1) [24]. Each item is represented by a 
puck that can slide (through clicking and dragging) onto a ranking 
matrix. The ranking matrix consists of 10 slots consisting of five 
main categories of importance: high, medium-high, medium, low-
medium, and low. Each of these main categories has two bins to 
allow the person to indicate slight variations in the importance of 
items. The pucks can also be placed side by side indicating equal 
importance. A numeric weight value is assigned to these bins on a 
scale of 0.05 to 0.95 with 0.10 intervals. AHP creates hierarchies 
and only the entries in one level of a hierarchy are directly 
compared by the user. In contrast, RIM allows the users to see the 
weights in each category side by side, and manipulate them if 
necessary. In general, AHP is not as transparent and thus may be 
harder for the decision makers to understand. 

In addition to requiring subjective weights of importance, the cost 
and benefit functions (1) also require values representing how 
well each metric meets the evaluation criteria (i.e., MBIi and MCIj). 
In some cases, the value of a metric can be represented with an 
objective number (e.g., time required to collect a metric), however 
for many criteria finding an objective value is impossible (e.g., 
construct validity of a metric). To determine the subjective MBIi 
and MCIj weights, AHP and RIM can also be used. 

Both AHP and RIM are intended to help decision makers select a 
choice out of many. However, when trying to answer a research 
question, the researchers will most likely need more than one 
metric. When selecting multiple metrics, the benefits and costs for 
multiple metrics will need to be combined. Moreover, the 
dependencies between the selected metrics will also need to be 
incorporated into the combined benefit-cost. For example, the 
total number of metrics selected would have an influence on the 
type I error of each individual metric.  

The linear combination of benefit-cost values facilitates both the 
combination of multiple metric costs and benefits, as well as the 
incorporation of metric dependencies by allowing additional terms 
to be added or subtracted from the overall value. Therefore, we 
used the difference of benefit and cost values to rank the metrics. 
This approach may not be optimal, however, the best method, if 
one exists, is currently unknown and is an area for future research. 
However, given that selection of multiple metrics is more realistic 
than selecting a single metric, it is important to facilitate the 
incorporation of metric dependencies when combining benefit and 
cost values. It is also important to assess if people can account for 
metric dependencies (e.g., statistical implications of collecting 
multiple metrics) when they evaluate metrics against a set of 
criteria. The latter issue was investigated as part of a larger 
experiment conducted to evaluate AHP and RIM methods for 
metric selection. 

4. METRIC SELECTION EXPERIMENT 
An experiment was conducted to a) investigate the perceived 
usefulness of the metric evaluation criteria, b) identify which 
criteria human factors experimenters consider to be important, and 

c) evaluate AHP and RIM for supporting metric selection. Thirty-
one human factors practitioners were presented with the 
description of a hypothetical unmanned vehicle supervisory 
control experiment, which was adapted from an actual experiment 
conducted by [30]. The participants were then asked to select 
either one or multiple workload metrics for this hypothetical 
experiment from a list of potential workload metrics provided to 
them. After making an initial selection, the participants used both 
AHP and RIM (order counterbalanced) to evaluate the list of 
workload metrics. After AHP and RIM solutions were displayed, 
the participants were given the choice to change their initial 
metric selection. They could keep their initial selection, pick AHP 
or RIM solutions, or come up with an entirely different selection. 
At the end of the experiment, the participants filled out a 
questionnaire, evaluating AHP and RIM on a multitude of 
characteristics.   

Because this experiment was our initial attempt to evaluate AHP 
and RIM, we focused on only workload metrics. Moreover, the 
participants were not allowed to select a workload metric that was 
not on the list provided to them. Keeping the experiment bounded 
provided us with a shorter experiment and more control on the 
experimental conditions, hence a better ability to draw 
conclusions. Although, a general assumption of this study is that 
the researchers using RIM and/or AHP are familiar with the set of 
available metrics through other sources (e.g., [8, 31]). 

4.1 Participants 
A total of 31 participants completed the study. Participants had 
experience with human subject experimentation and metrics. 
Experience with human subject experimentation ranged from one 
month to forty years. Participants were recruited from both 
academia and industry, and consisted of 9 females and 21 males, 
ages ranging from 19 to 64 years (average: 36.6, stdev: 13.6). 
Eleven of the participants currently held an academic position. 
The highest degrees held included high school (n=1), college 
(n=12, 5 in academia and 7 in industry), Master’s (n=12, 4 in 
academia and 8 in industry), and Ph.D. (n=6, 2 in academia and 4 
in industry). The experiment took 1 to 1.5 hours to complete. 

4.2 Apparatus 
The experiments were conducted in a mobile experimental test-
bed mounted in a 2006 Dodge Sprinter. Two 21-inch wall 
mounted displays were used in the experiment. By integrating an 
experimental test bed into a vehicle, the experiment was able to 
travel to the participants. Access restrictions into government 
facilities, particularly with foreign graduate students, often make 
it difficult to take such experiments directly into the work place. 
Thus, the use of the vehicle allowed a high number of human 
factors practitioners to be recruited for participation.  

4.3 Experimental Design 
The experiment was a 2x2 mixed factorial design with two 
independent variables: number of metrics to select (a single 
metric, a subset of all metrics) and weight assignment method 
(AHP, RIM). Number of metrics to select was a between-subjects 
variable, with 15 participants selecting a single metric out of all 
the candidate metrics, and another 16 selecting a subset of all the 
metrics (one, two, or all). Weight assignment technique was a 
within-subjects variable with each participant making a decision 
using both AHP and RIM. In order to control for learning effects, 
the order of presentation was counterbalanced.  



 
 

Figure 1. Experimental interfaces: Ranking Input Matrix (RIM) (left), Analytic Hierarchy Process (AHP) (right). 

 
4.4 Experimental Tasks 
The experimental instructions started with the description of the 
hypothetical experiment and the list of potential workload metrics 
to choose from: embedded secondary task performance, NASA 
TLX, and pupil dilation based on eye tracking data. The 
hypothetical experiment assessed the effects of different auditory 
alerts on human supervision of multiple unmanned aerial vehicles. 
When participants finished reading this part of the instructions, 
they were asked to select either one or a subset of workload 
metrics depending on the experimental condition they were 
assigned (i.e., number of metrics to select). 
After the initial metric selection, participants read a detailed 
description of the metric evaluation criteria. A subset of the 
criteria identified in [8] was selected to be included in this 
experiment. The selection was based on the relevance to the 
metrics used in the hypothetical experiment. The cost estimates 
were provided where applicable. There were no explicit monetary 
or time constraints imposed on the experiment. To have more 
experimental control, we did not ask the participants to define a 
hierarchy structure for AHP but provided the structure below.  
Benefits:  
• Coverage 
• Construct validity: a) discrimination power, b) sensitivity, c) 

inter/intra subject reliability, d) non-intrusiveness 
•   Type I error (for multiple metric selection) 
Costs: 
• Data gathering: a) time for data collection, b) monetary cost 

for data collection,  c) measurement error likelihood 
• Data analysis: a) time for analysis, b) expertise for analysis 

The instructions included a detailed description of AHP and RIM, 
including how the benefit-cost values were calculated. After 

reading about the first method (AHP or RIM) the participants 
used an interface for that method. With this interface, the 
participants assigned subjective weights of importance to the 
metric evaluation criteria, and also determined how well potential 
workload metrics met each criterion. In the RIM condition, the 
participants used the click and drag interfaces (Figure 1) to rank 
the evaluation criteria based on importance, as well as to rank the 
metrics with respect to how well they met the criteria. In the AHP 
condition, participants conducted pair-wise comparisons to 
indicate the relative importance of evaluation criteria, and within 
each criterion they performed pair-wise comparisons to identify 
how well the metrics satisfied the criteria (Figure 1). Instructions 
were also provided on the interfaces as reminders on what to do 
for each window. Since the complete set of written instructions 
was available throughout the experiment, the participants could 
also refer back to them if they needed clarification. 
In AHP, if participants could not meet the consistency threshold 
of 0.1 suggested by [28], then they were presented with a pop-up 
window indicating their inconsistency. The participants were 
asked to retry and change their responses to achieve the suggested 
consistency threshold. However, participants were given the 
ability to skip this step if they felt they had tried “many” times but 
could not reach the threshold value. The ability to skip was 
deemed important since we observed in pilot testing that 
participants would get frustrated to the point that they wanted to 
quit the experiment. The details on consistency checks were 
included in the written instructions and were also demonstrated to 
the participants before they started the AHP trial. 
After completing the session with the first interface, the 
participants read the instructions for the next method (AHP or 
RIM) and completed their second test session using the next 
interface.   



The experimental tasks for the multiple metric selection condition 
were slightly different than the single metric selection condition. 
As previously mentioned, the participants in this condition were 
told that they could select more than one metric. These 
participants were also presented with an extra evaluation criterion: 
type I error. This criterion is not relevant for single metric 
selection, however, it can be a negative benefit when selecting 
multiple metrics since analyzing more metrics increases the 
overall type I error. Participants compared this criterion to the 
other criteria in terms of importance. In order to assess if 
participants were aware of how much type I error would change 
with different number of metrics, they were also asked to compare 
the number of workload metrics collected (1 to 3) with respect to 
type I error. 
At the end of the experiment, participants were provided with the 
suggested list of workload metrics ranked based on AHP or RIM 
solutions. In the multiple metric selection condition, this list could 
consist of groupings of metrics. For example, the best solution 
could be NASA TLX and secondary task performance. The 
participants were then asked to evaluate the solutions provided by 
AHP and RIM and the initial selection they indicated before using 
the interfaces. This evaluation helped us assess if the two 
methodologies result in different selections and if so, which 
methodology produces results regarded to be better by the 
participants. Post-test surveys were administered to assess 
participant opinions about the evaluation criteria and the two 
methods. 

5. EXPERIMENTAL RESULTS 
Mixed linear models were built for continuous data, whereas non-
parametric statistics were utilized to analyze categorical data 
where appropriate (α=.05). 

5.1 Selected Metrics 
For single metric selection, AHP and RIM in general resulted in 
the same solutions (87%), which also matched most of the 
participants’ initial choices (AHP: 73%, RIM: 87%). Thus, 
regardless of the method used, participants directed each tool so 
that the results generally matched their expectations.  Participants’ 
self reported experience with the three workload metrics was 
assessed on a Likert scale (1: no experience, 5: expert). 
Participants in general had more experience with secondary task 
(mean=2.3) and NASA TLX (mean=2.3) measures as compared to 
pupil dilation (mean=1.8). There were approximately an equal 
number of participants (n=8) who identified secondary task and/or 
NASA TLX as the metric they have the most experience with. 
Regardless of this previous experience, 10 out of 15 participants 
still chose secondary task as their initial metric selection rather 
than NASA TLX, suggesting that previous experience did not 
solely determine metric selected.  
For multiple metric selection, the majority (n=9) of the 
participants selected secondary task and NASA TLX as their 
preferred metrics, which was followed by NASA TLX (n=3) as 
the second most preferred metric. Interestingly, contrary to our 
expectation, many of the participants did not choose to collect as 
many metrics as they could. This finding may be due to the 
experimental instructions that highlighted resource limitations. 
Similar to the single metric selection condition, there was no 
strong evidence to suggest that the participants changed their 
selections based on the advice from one or the other method. 

5.2 Type I Error 
In this experiment, we focused on type I error as a way of 
assessing if researchers think about the more hidden ramifications 
of collecting multiple metrics aside from monetary or time costs.   
In the multiple metric selection condition, as part of RIM and 
AHP, participants were asked to rate how having one, two, and 
three metrics would affect overall resulting type I error. Six 
participants out of the 16 total incorrectly indicated that either the 
overall type I error would not be impacted (n=1) or the type I 
error would increase as the number of metrics decrease (n=5). 
Three of these six participants repeated their mistake twice, once 
with RIM and once with AHP. There were no particular common 
characteristics for the participants who repeated their mistake. It is 
unclear if the incorrect responses regarding type I error were due 
to slips or mistakes. That is, they could be either due to a failure 
to follow the interface instructions or a lack of knowledge. 
Regardless of the cause, a fallacy of both methods is that the 
outputs from AHP and RIM are only as good as the information 
provided to them. 

5.3 Subjective Ratings 
The evaluation criteria received an average usefulness rating of 
4.4 (1-lowest, 5-highest). There was one response with a rating of 
3, 18 responses of 4, and 12 responses of 5.  

 
Table 1. Subjective ratings on method usefulness, 

understanding (* significant at α=.05) 

  1 
Low 

2 
 

3 
Avg. 

4 
 

5 
High 

χ2(p-value) 
(4-5 vs. 1-3) 

Usefulness 
AHP 0 6 7 10 8 .81 (.47) 

RIM 0 3 5 17 6 7.26 (.01)* 

Worth the 
time 

AHP 1 6 6 15 3 .81 (.47) 

RIM 0 2 6 20 3 7.25 (.01)* 

Understand 
Method 

AHP 2 1 7 10 11 3.9 (.07) 

RIM 0 1 8 8 14 5.45 (.03)* 
 
Participants were also asked a list of 1-5 Likert scale questions to 
assess their understanding and perceived usefulness for the two 
methods. Table 1 presents statistical results comparing participant 
ratings with respect to being less than or equal to average vs. 
being above average (χ2). Overall, participants’ ratings for RIM 
indicated greater than average perceived usefulness, 
understandability, and worthiness of their time. For AHP, these 
responses were not significant, except a marginally significant 
result assigned to understandability. 

5.4 Time for Metric Selection 
Significant differences were observed on how long it took the 
participants to select their metric(s). AHP took on average 435 sec 
longer than RIM (95% CI: 307, 562), a 73% increase. Regardless 
of the method used, the second trial took on average 214 sec 
shorter than the first trial (95% CI: 127, 301), a 23% decrease. 
This finding was expected since both conditions used the same 
scenario.  



5.5 AHP Consistency Conformance 
Consistency was only an issue when evaluating three or more 
elements through pairwise comparisons. On average, participants 
were prompted to retry on 48% of such instances (stdev=20%). 
On average, the maximum number of times they had to retry in a 
single instance was 4.8 (stdev=3.2, min=1, max=14). 
When the participants were prompted to retry at least once, they 
skipped without achieving the suggested consistency threshold on 
average 38% of the time (stdev=39%). Out of the 31 total 
participants, 11 retried until they achieved consistency (0% skip), 
whereas 5 chose to skip 100% of the time either after some retrials 
or none. The rest skipped occasionally with skip rates ranging 
from 8% to 86%. The skipping consistency values were on 
average 0.22 (stdev=0.13, max=0.65). The participants who 
skipped 100% of the time had an average age of 49, whereas the 
participants who tried until they reached consistency were 
younger (average age: 29). Experience with workload metrics 
were similar across the two groups (t(14)=0.27, p=.8).  

5.6 Open-ended Comments on Metric 
Selection Methods 
The majority of the positive AHP comments were in regards to the 
pairwise comparisons (n=12 or 40% of participants). Thirteen 
percent of the participants indicated that AHP made them think 
longer and in more detail (n=4). Twenty three percent liked 
consistency checks (n=7), whereas 16% (n=5) identified them to 
be frustrating. Thus, the views on consistency checks were split. 
Thirty percent thought that AHP was too complicated (n=11), and 
16% identified it as being time consuming (n=5).  
The positive aspects of RIM cited commonly were ease of use 
(n=10 or 32% of participants), ease of visualizing responses (n=9 
or 29% of participants), speed (n=8 or 26% of participants), and 
being simple (n=5 or 16% of participants). The total number of 
negative responses for RIM (n=11) was fewer than the total 
number of negative responses for AHP (n=32). A few participants 
indicated that they did not think critically at times (n=3 or 10% of 
participants). The 10-point rating scale was deemed hard by a few 
participants (n=3 or 10% of participants). 

6. DISCUSSION 
This paper presents an approach for helping experimenters select 
an efficient set of metrics for evaluating unmanned vehicle 
supervisory control. The metric evaluation criteria and the 
relevant cost-benefit parameters presented are guidelines only. It 
should be noted that there is not a single set of metrics that are the 
most efficient across all applications. Research-specific aspects 
such as available resources and the questions of interest will 
ultimately determine the relative metric quality.  
Two different methods to develop principled subjective weights 
were identified and evaluated through an experiment with human 
factors practitioners: AHP and RIM. Overall, the participants 
rated RIM to be more useful, easier to understand, and worth their 
time. AHP took a significantly longer time, and some participants 
considered it to be time consuming. In order to keep the 
experiments short, participants were asked to evaluate only three 
workload metrics. In reality, researchers not only have to choose 
from a large number of metrics but they also ideally have to 
choose from a large number of constructs (e.g., performance, 
workload, etc.). Because AHP requires pairwise comparisons 

between all potential metrics, each additional potential metric 
would drastically increase the time required to perform AHP. 
Thus, the appropriateness of AHP selecting from a large set of 
potential metrics is questionable.  
Another AHP problem revealed from the experiment is user 
frustration and/or lack of conformance to consistency checks. All 
participants ran into consistency issues where they could not meet 
the consistency threshold suggested by the AHP inventor [28]. 
Some participants skipped achieving consistency 100% of the 
time, whereas some retried until they achieved the threshold. The 
participants who tried to achieve the threshold indicated that at 
times they forgot about what they were evaluating, and instead 
focused on tweaking their responses to obtain a value less than 
0.1. In addition, some participants indicated that pairwise 
comparisons made them lose the big picture. These issues are 
potential concerns with any method that utilizes pairwise 
comparisons for assessing subjective responses (e.g., NASA 
TLX).  
When it came to the metrics selected, the majority of participants’ 
initial metric selections matched the solutions proposed by AHP 
and/or RIM. Thus, no substantial benefits were observed for either 
of the methods. Even if these methods use mathematical formulas 
to obtain cost benefit functions, they are inherently subjective as 
users provide most of the information that goes in the cost benefit 
functions. Therefore, if the user inputs incorrect information, 
either by a slip or a mistake, the methods may provide flawed 
results. For example, participants were asked to indicate the 
effects of additional metrics on the overall type I error. Responses 
from 37% erroneously suggested that type I error decreases with 
additional metrics analyzed. Combined with the weight of 
importance for type I error, this erroneous information was 
included in AHP and RIM calculations. But because type I error 
was only one criterion among many and its weight of importance 
was not very high, the final solutions of AHP and RIM were not 
drastically influenced by the incorrect inputs.  
While using AHP and RIM, participants referred back to the 
criteria several times as observed by the experimenter. 
Approaches like AHP and RIM have the potential to help 
researchers select metrics by considering many attributes that they 
may not consider otherwise. Thus, it is essential to provide better 
information to researchers in terms of how they could view the 
costs and benefits of a specific metric, before providing them with 
a mathematical tool that predicts what the best set of metrics 
would be. 
Although this experiment revealed several interesting results, it 
only focused on selecting from a few workload metrics. Time to 
complete AHP was reasonable, but RIM was much faster to use. 
Thus, for evaluating a larger set of metrics and more metrics of 
different types, RIM appears to be more appropriate. However, 
the acceptance and effectiveness of RIM for evaluating a larger set 
of metrics is currently unclear and should be investigated in the 
future. Moreover, the underlying methodology for RIM should be 
modified in order to support metric selection when evaluating 
metrics from multiple classes. For example, a penalty can be 
introduced to avoid selecting metrics from the same class rather 
than selecting metrics from different classes. Determining such 
modifications in the RIM methodology is another point for future 
research. 
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