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Summary: This paper presents initial findings from a driving simulator study 
comparing user responses to a noise-robust voice-controlled system while driving 
to a noise-sensitive one in the presence of background noise. Twenty participants 
interacted with both noise-sensitive and noise-robust simulated voice-controlled 
infotainment systems while driving under three background noise conditions (no 
noise, music, and children). While both systems were viewed as useful and 
satisfying, user acceptance was affected by background noise with the noise-
sensitive system, but not the noise-robust one. There was also no evidence that user 
acceptance was calibrated by having background noise as a context for varying 
levels of accuracy. No significant differences were observed between the two 
systems in driving performance metrics analyzed (average speed, speed variability, 
and standard deviation of lane position), but the use of either system affected 
driving performance compared to baseline driving. A larger sample size at the end 
of this study along with the analysis of a larger set of performance metrics will 
provide further insights.  

 
INTRODUCTION 

Voice-controlled, or voice-command, infotainment systems have become increasingly common 
in new automobiles. By 2019, more than half of new vehicles are expected to come with a voice-
controlled system installed (IHS Technology, 2013). Such systems can perform a wide variety of 
tasks, such as navigation, music selection, and retrieval of contacts.  

On-road studies by Ranney et al. (2005) and Reimer et al. (2013) have shown that production 
level in-car voice command systems performed better compared to manual interactions with 
infotainment systems on a number of driving performance metrics. However, voice-controlled 
systems are not without their limitations, as their accuracy can degrade in a noisy environment, 
which is often the case for driving, given the presence of audio entertainment, passenger 
conversation, and outside noise. Previous simulator studies by McCallum et al. (2004) and Kun 
et al. (2007) showed degradation in driving performance when voice recognition accuracy was 
reduced. However, in both studies, recognition accuracy of the system was manipulated under 
identical environmental conditions. In other words, there was no additional context provided to 
help justify the reduction in voice recognition accuracy these participants experienced. It has 
been suggested by Lee & See (2004) that understanding the possible influence of a system’s 
environment on its performance may allow users to appropriately adjust their level of trust in the 
system. 
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More recently, Li et al. (2014) reviewed new techniques that may resolve the issue of sensitivity 
to noise in voice-controlled systems, and that may soon be implemented in commercially 
available vehicle systems. With sight of such development, the present study aims to compare a 
noise-sensitive system that degrades in accuracy due to the presence of background noise to a 
noise-robust one in terms of user experience and driving performance. Furthermore, by 
examining the voice-controlled systems in the presence of background noise, the study also aims 
to investigate the effects of accuracy degradation when context (i.e., background noise) is 
introduced. This paper presents preliminary findings of the study, focusing on user acceptance 
and driving performance of the first 20 participants who completed the study. In particular, user 
acceptance and some driving performance metrics were contrasted between the use of the noise-
robust and the noise-sensitive systems under three background noise conditions (none, music, 
children). A baseline condition with no system assessed driving performance under the three 
background noise conditions. 
 
METHODS 

This study followed a 3x3 within-subjects design, manipulating the voice-controlled system 
used: baseline (no voice-controlled tasks), noise-sensitive, and noise-robust voice-controlled 
systems, as well as background noise type: none, music at 60 dB, and backseat children noise at 
70 dB. The sensitive system, designed to represent accuracy degradation in the presence of 
disruptive background noise, had high accuracy (90%) with no background noise, medium 
accuracy (70%) with music, and low accuracy (30%) with the louder background noise of 
children talking. The robust system, representing a system unaffected by background noise, 
performed at 90% accuracy under all three background noise conditions. Following a ‘Wizard of 
Oz’ approach, the voice-controlled systems were simulated using pre-programmed graphics, and 
the accuracy level was manipulated by the experimenter without the knowledge of the 
participant.  

Participants 

Participants were recruited through social media and online classified advertisement services 
from the Greater Toronto Area, Canada. They were required to have normal hearing, have had a 
full driver license for at least three years, and have driven at least 1600 km in the last year. 
Participants were also required to have normal vision or be able to wear contact lenses, and they 
were screened for proneness to simulator sickness. The compensation was C$15/hr, with up to 
C$5 task bonus for secondary task performance (all participants received C$5 bonus at the end of 
the study as system accuracy and hence secondary task performance were controlled in the 
experiment). The study was approved by the University of Toronto Research Ethics Board. 

Twenty-two participants have completed this on-going study, but two were excluded from 
analysis due to sensor issues. The analyzed sample consists of 20 participants (11 male and 9 
female), aged 25-40 (M=31, SD=4.7).  
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Apparatus  

A NADS quarter-cab MiniSim™ Driving Simulator was used, which consists of three 42” 
widescreen displays, with a 130° horizontal and 24° vertical field of view at a 48” viewing 
distance. Driving performance data was collected at 60 Hz. While not reported in this paper, the 
study also collected gaze data via an eye tracking system, and heart rate and Galvanic skin 
response using physiological sensors.  

A Microsoft Surface Pro 2 was used to present the voice-controlled systems to participants. This 
tablet was positioned to the right of the simulator’s dashboard. Background noises were played 
through the simulator’s speakers, initiated by triggers in the driving scenarios after participants 
drove 1812 ft (552 m) in a scenario. Sound samples used for creating the background noise of 
children arguing were obtained from an open source directory (ETSI, 2006), and a song for the 
music background (Michael Jackson’s “Billy Jean”) was purchased through Apple’s iTunes. 

A program developed in Python ran on a separate PC allowed the experimenter to control images 
displayed on the Surface in real time to imitate a voice-controlled infotainment system.  

Driving Scenario 

All experimental drives used the same driving environment, which consisted of an approximately 
22912 ft (6984 m) section (approximately 7 minutes to complete) of a 45ft (13.7m) wide, 
undivided four lane road in an urban environment with light oncoming traffic and a posted speed 
limit of 40 mph. Participants were instructed to follow a lead vehicle, which was programmed to 
maintain a headway time of 1.5s to the participant’s vehicle except when braking. Four lead 
vehicle braking events occurred in each drive, at 16%, 30%, 40%, and 89% of the drive in 
distance. Participants undertook nine experimental drives in blocks of three, each block testing a 
different voice-controlled system across all three noise conditions. The voice-controlled systems 
and the noise conditions experienced were administered in a counterbalanced order across 
participants. 

Secondary Tasks 

Tasks were chosen to resemble typical requests of an in-car voice command system, and fell into 
three categories: music tasks (i.e., find this song), navigation tasks (i.e., find directions to this 
location or search for locations nearby), and contact tasks (i.e., find this contact’s phone number 
or address). During each experimental drive, participants were asked to interact with the supplied 
“voice-controlled system,” while maintaining their primary task of “driving as safely as 
possible.” Participants were prompted verbally by the experimenter to attempt each task (e.g., 
“Please use the voice-controlled system to find pizza restaurants around the University of 
Toronto”). Participants would initiate the voice-controlled system by saying “Hey VC”, and once 
the system responded with an alert chime and displayed “Listening”, participants would continue 
to issue a voice command that they judged would best complete the task (e.g., “Show me pizza 
restaurants around the University of Toronto” or “What are the pizza restaurants around the 
University of Toronto?”). The experimenter controlled the secondary display to provide a canned 
visual response imitating the voice-controlled system.  
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In each drive, there were 10 interactions with the voice-controlled system (baseline drives 
excluded). Participants were told to repeat a task continuously until it was successfully 
completed. System accuracy was pre-set in terms of interactions. For example, a 70% accuracy 
condition would have seven successful interactions and three failures. A failed interaction could 
be either planned (canned erroneous display for the task, e.g., showing pizza restaurants in an 
incorrect but similar sounding location) or occurred when participants provided incorrect verbal 
input, in which case the system would display a generic “Cannot Understand, Please Repeat” 
error. The latter case has been exceedingly rare thus far in our data collection.  

Procedure 

Informed consent was followed by a short questionnaire on demographics, driving history, and 
technology use. The eye tracker was calibrated and physiological sensors were attached to the 
participants. Through a practice drive, participants were familiarized with the simulator, 
introduced to the voice-controlled tasks, and were monitored for signs of simulator sickness. 
Participants were informed that researchers were evaluating two new voice-controlled systems 
and were instructed on how to initiate and interact with the voice-controlled systems.  

Following each voice-controlled system drive (six total), participants were asked to complete a 
short user acceptance questionnaire (Van Der Laan, Heino, & De Waard, 1997), a nine item 
scale assessing how useful and satisfying users find a system. Participants were also asked to rate 
the workload they experienced using the voice-controlled system; the Rating Scale Mental Effort 
(De Waard, 1996) was used for this purpose. After all experimental drives had been completed, 
participants filled out a final general survey on personality and driving behaviours.  
 
RESULTS 

While the current study collected various measures, many were outside the scope of this paper 
(gaze data, physiological data, and subjective responses on technology experience, driving 
behaviours/history, and personality). The present analysis focuses on user acceptance and driving 
performance during car following (excluding lead vehicle braking events).  

To assess user acceptance, responses were averaged across the 5-point Likert scale items of the 
usefulness and satisfying subscales (Van Der Laan et al., 1997), respectively. The usefulness and 
satisfying scores were computed for each of the six drives that contained voice-command tasks. 
Driving performance measures were computed for all drives to obtain the average speed, 
standard deviation (SD) of speed, and SD of lane position for each experimental drive, excluding 
periods of lead vehicle braking (from the onset of lead vehicle brake lights to the lead vehicle 
regaining a speed of 40 mph).   

Mixed linear models were built using R’s “nlme” package for each of the dependent measures 
described above. Voice-controlled system type (none/baseline, noise-sensitive, and noise-robust), 
noise type (none, music, children), and their interaction were included as fixed effects, and 
participant was included as a random effect. SD speed was log transformed to correct for 
heteroscedasticity.  
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Participants viewed both systems positively in terms of usefulness and how satisfying they found 
the experience (Figure 1). For both usefulness and satisfying measures, there were significant 
interaction effects between voice-controlled system type and noise type, and significant main 
effects of noise type (Table 1). The sensitive system, compared to the robust system, scored 
lower on both usefulness and satisfying scales, under both music (usefulness: Δ = -0.48, t(95) = -
4.03, p = .002; satisfying: Δ = -0.46, t(95) = -3.42, p = .01) and child noise (usefulness: Δ = -
0.81, t(95) = -6.80, p = .002; satisfying Δ = -1.09, t(95) = -8.04, p < .001) conditions. Further, 
follow-up comparisons revealed that these differences observed in the acceptance responses were 
greater for the child noise condition than they were in the music condition for both usefulness (Δ 
= 0.48, t(95) = 4.03, p = .002) and satisfaction (Δ = 0.54, t(95) = 3.97,  p = .002). 

 

Figure 1: User acceptance results with standard error 

The type of voice-controlled system participants experienced first did not affect their ratings. 
Welch two sample tests did not find differences in the usefulness (t(17.4) = -0.28, p = .78) and 
satisfying (t(14.9) = -0.27, p = .79) scores of the sensitive system between those participants who 
experienced the sensitive system before the robust system (n=11), and those who received robust 
system first (n=9). Thus, the experience with one system did not appear to create certain 
expectations for the performance of the next one. 
 

Table 1: F-Statistics from mixed linear models on user acceptance and driving performance   

 System Type Noise System Type*Noise 

Response Variable F-value p F-value p F-value p 

Usefulness F(1,95) = 1.59 .21 F(2,95) = 18.32 <.0001 F(2,95) = 7.68 .001 

Satisfying F(1,95) = 1.03 .31 F(2,95) = 23.06 <.0001 F(2,95) = 12.73 <.0001 

Average Speed F(2,156) = 13.36 <.0001 F(2,156) = 0.40 .67 -  

Log (SD Speed) F(2,156) = 22.08 <.0001 F(2,156) = 0.26 .77 -  

SD Lane Position F(2,156) = 4.50 .01  F(2,156) = 0.38 .69 -  

 



6 
 

For driving performance measures, the interaction between system type and background noise 
was not significant, and was excluded from the final models. Voice-controlled system type had a 
significant effect on average speed, SD speed, and SD lane position (Table 1). Differences 
existed only between the baseline and voice-controlled system conditions. Compared to baseline, 
both noise-sensitive and noise-robust systems had lower average speed (sensitive: Δ= -1.73, 
t(156) = 4.76, p < .0001; robust: Δ= -1.50, t(156) = 4.12, p < .001) and higher SD of speed 
(sensitive: Δ = 0.15, t(156) = -6.17, p < .0001; robust: Δ= 0.13, t(156) = -5.22 p < .0001). 
Finally, SD of lane position was smaller for sensitive (Δ= -0.040, t(156) = 2.72, p = .02) and 
robust (Δ = -0.036, t(156) = 2.46, p = .04) systems, relative to baseline driving.  
 
DISCUSSION 

Preliminary findings show that participants found both voice-controlled systems to be useful and 
satisfying in general, meriting the use of voice commands for in-vehicle infotainment tasks. 
Higher satisfaction and perceived usefulness was observed with the noise-robust system 
compared to the noise-sensitive one when background noise (music or children) was present; the 
effect was larger in the presence of child noise. Thus, it appears that system reliability affects 
user acceptance even if an explanation for degradation in reliability was available (i.e., the 
background noise). Such observations have been noted by Lee & See (2004), where automation 
failures, even due to environmental factors external to the automation, can cause mistrust and 
disuse of a system. Furthermore, as the order of experiencing noise-sensitive or noise-robust 
system did not affect the user acceptance scores, there was no evidence of calibration in user 
acceptance in the presence of a more reliable voice-controlled system. However, the user 
acceptance results did not consider participants’ previous experience with in-car voice command 
systems or general technology use. It is possible that users with a more solid understanding of in-
car voice command systems may be better at calibrating their trust in the system, as they may 
better understand its potential limitations in noisy environments. Future work should investigate 
if such relationships exists. 

For data collected from 20 participants so far, driving performance (speed, SD of speed, and SD 
of lane position) was affected by interacting with a voice-controlled system relative to baseline 
driving, but not affected by the level of accuracy or the type of voice-controlled system used. 
Previous research, limited in numbers, had not been conclusive of the effects of voice 
recognition accuracy level on driving performance either. Kun et al. (2007), also with a sample 
size of 20, found larger variance in steering angles with lower voice recognition accuracy, but no 
effect on speed or lane position variability. McCallum et al. (2004) also did not find significant 
effects of voice recognition accuracy level on average speed and lane position variability, but 
noted a non-significant trend towards improved responses to emergency braking events with 
enhancing accuracy (with n=24). Current analyses did not examine lead vehicle braking events, 
but future analysis will investigate whether response to lead vehicle braking is affected by 
recognition accuracy, mediated through user acceptance. The larger sample size (n = 36) that will 
be obtained at the completion of this study will also provide more power for detecting any other 
potential effects that may exist. Analysis of other data collected in this study, such as 
physiological data and survey responses, will also enhance our understanding of how previous 
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experience, personality, and stress may have affected participants’ perception of the voice-
controlled systems and their driving performance while using these systems.  

The current study was limited in the design of noise conditions, where two active noise 
conditions were of both a different nature and different volume. Music is likely to be pleasant 
and entertaining, while child noise may be irritating or stressful. Future research should vary the 
background noise in a more systematic manner in the study of voice-controlled systems. 
Introduction of another condition, where the accuracy levels of the voice-controlled system 
degrades without any background noise, can help further assess the effects of context on user 
acceptance. 
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