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Abstract 

This thesis investigates the associations between crash outcomes, the existence and type 

of driver distraction as well as driver’s age. Only a limited number of studies have investigated 

driver distraction as it relates to crash outcomes. Moreover, these studies were limited to 

specific demographics (i.e., young drivers and police officers). This thesis addresses a gap in the 

literature by considering and comparing drivers of all ages. The crash outcomes considered in 

this thesis consist of the type of crash as well as the injury severity sustained by occupants (i.e., 

passengers and drivers) involved in the crash. An ordered logit model was built to predict the 

likelihood of severe injuries and a multinomial model was developed to predict the likelihood 

that a driver will be involved in one of three common crash types: singular, angular, and rear-

end. The models were built on a national crash database: U.S. General Estimates System (2003 

to 2008). In these models, various factors (e.g., weather, driver’s gender, and speeding) have 

been statistically controlled for, but the main focus was on the interaction of driver’s age and 

distraction type. The findings of this thesis have implications for policy making and prioritizing 

capabilities of distraction-related safety systems. 
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Chapter 1  

Introduction 

ading styles 1-9 for thesis body: Heading 1 » 
1.1 Driver Distraction 

1.1.1 Definitions 

Broadly, driver distraction can be defined as “the diminished attention of the driver to 

the driving task” (Donmez, Boyle, & Lee, 2006). Attention may be diminished due to an 

external source (e.g., using a cell phone) or internally (e.g., being lost in thought). Some 

definitions focus on the former, i.e., they define driver distraction as a consequence of external 

sources. For example, Stutts et al. (2001) state that distraction occurs when a driver is delayed in 

recognizing information necessary to drive safely because some event, activity, object, or person 

within or outside the vehicle compels the driver to shift attention away from the driving task. 

Within the broader definition, drowsiness or fatigue can also be seen as a special case of 

distraction, as it leads to progressive withdrawal of attention from the road and traffic demands 

(Williamson, 2009). 

This thesis adopts the broader definition of driver distraction to assess associations 

between various sources of distractions and crash outcomes, while differentiating between 

external and internal sources. Ranney (2008) proposed four major categories of distraction 

sources: visual, auditory, biomechanical, and cognitive. Most distractions are a combination of 

these four categories, so it is useful and practical to study certain tasks that drivers engage in 

rather than the more abstract categories (Neyens & Boyle, 2007). The tasks induced by external 

sources, which are commonly observed and are investigated in this thesis, are as follows: talking 

on a cell phone, dialling/texting on a cell phone, interacting with in-vehicle technologies, eating 
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and drinking, talking with passengers, and looking at objects outside of the vehicle. The 

granularity of these tasks is dictated by the level of detail recorded for police-reported crashes, 

which this thesis utilizes. As for internal sources, this thesis investigates drowsiness and fatigue 

as well as lost in thought and looked but did not see. Lost in thought and looked but did not see 

are referred to as inattention in the police reports; they are also often referred to as cognitive 

distraction in the literature (Liu & Donmez, 2011; Neyens & Boyle, 2007). Both terms are 

somewhat misleading given that inattention can be caused by a broad set of sources. Similarly, 

most, if not all, distractions lead to a cognitive interference. This thesis adopts the term 

“inattention” to maintain consistency with police reports.  

1.1.2 Human Behaviours Contributing to Crash Risks 

Human error is estimated to be the sole cause in 57% of all traffic crashes and a 

contributing factor in over 90% of them (Treat et al., 1979). Specifically, inappropriate speed 

choice, gap acceptance decisions, close following distances, and improper visual scanning 

behaviours have been identified to increase crash risks (Cooper & Zheng, 2002; Heino, Van der 

Molen, & Wilde, 1996; Kloeden, 2001; Leung & Starmer, 2005; Neyens & Boyle, 2007; 

Owsley & McGwin Jr, 2010; Poole & Ball, 2005). These hazardous behaviours may stem from 

conscious choices resulting from risk taking tendencies (e.g., sensation seeking, willingness to 

engage in distracting activities) and/or from an inability to assess roadway demands 

appropriately due to factors such as inexperience or perceptual/cognitive saturation. Driver 

distraction can contribute to crash risks by facilitating inappropriate behaviours due to a 

conscious decision to engage in distracting activities and/or the resulting perceptual/cognitive 

demands.  



3 

 

Kloeden et al. (2001) estimated that in a 60 km/h speed limit zone, the risk of being 

involved in a fatal crash doubles with each 5 km/h increase in travelling speed above 60 km/h. 

While speeding has been tied to an increased likelihood of severe crashes, maintaining close 

following distances is suggested to increase the risk of rear-end crashes  (Neyens & Boyle, 

2007). Although no explicit links to actual crash risks or outcomes have been established, closer 

following distance and shorter gap acceptance are considered to be riskier and are used as risk 

measures in previous studies (Cooper & Zheng, 2002; Heino, et al., 1996; Leung & Starmer, 

2005). Inappropriate scanning behaviours have also been suggested to increase crash risks 

(Owsley & McGwin Jr, 2010). Longer fixations to internal or external objects, less frequent 

saccades, and maintaining a narrow field of view indicate that the driver may not be attending to 

safety relevant information in the environment (Poole & Ball, 2005).  

These risky behaviours appear to manifest in varying degrees across different age 

groups. For example, teen drivers, due to their inexperience, often fail to scan further ahead on 

the road (Harrison, 1997). Differences have also been found across age groups regarding 

choices of speed, following distance, and gap acceptance (Wasielewski, 1984). Differences in 

these behaviours combined with varying information processing capabilities lead to different 

crash risks and crash outcomes for different age groups. The relationship between crash 

involvement and driver age is a U-shaped function, where rates are higher for older and younger 

drivers (Massie, Campbell, & Williams, 1995). For example, younger drivers drive more at-risk 

than mid-age or older drivers in terms of faster speeds, closer following distances, less efficient 

visual scanning behaviours, and higher levels of distraction involvement (Boyce & Geller, 

2002), whereas older drivers have a diminished ability to respond to hazardous situations due to 

age related degradation in perception, cognition, and reaction (Chaparro & Alton, 2000; 

DeLucia, Kaiser, Bush, Meyer, & Sweet, 2003; Strayer & Drews, 2004). Given the inherent 
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variation across age groups in behaviour and performance, and the research gaps that will be 

discussed in the following sections, this thesis will be the first to investigate the associations 

between crash outcomes and distraction – age interaction.  

1.1.3 The Prevalence of Driver Distraction in Crashes 

With the increasing sophistication of entertainment and driving assistance technologies 

on board, drivers are exposed to more distraction sources than before. Performing non-driving-

related tasks imposed by these sources can divert driver’s attention away from activities critical 

for safe driving (Lee, Young, & Regan, 2009). Even in the years preceding the widespread use 

of complex technologies in vehicles, between 13 and 50 percent of crashes are attributed to 

driver distraction. The estimated consequences are as many as 10,000 lives lost and as much as 

$40 billion in damages each year (Stutts, et al., 2001; Sussman, Bishop, Madnick, & Walter, 

1985; Wang, Knipling, & Goodman, 1996). 

Reason’s (1990) accident causation model suggests that an accident cannot be attributed 

to one simple cause. Instead, it occurs due to a chain of related events. Although the cause of a 

crash cannot be summed up by looking at a single factor (e.g., human error, environmental 

condition, or vehicle problem), the existence of these specific factors can be informative. A 

large naturalistic truck study identified driver distraction to be the immediate reason in 17% of 

crashes (Starnes, 2006). In the largest naturalistic study of passenger vehicles to date, the 100-

car naturalistic study where 109 drivers were monitored, 80% of 69 crashes and 65% of 761 

near-crashes that were recorded involved observable distractions  (including eyes-off-road and 

conversing on the phone or with passengers) within three seconds before the moment of contact; 

whereas prior estimates had been in the range of 25% (Dingus et al., 2006).  
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On the contrary to the frequent prevalence of distraction in pre-crash moments, it 

appears that distraction engagement in general is much lower. For example, in a study by Stutts 

et al. (2005) where video cameras were installed in the vehicles of 70 drivers in North Carolina 

and Philadelphia (where use of hand-held phones was legal) and data were collected over a 

week, 34% of drivers used their cell phones while driving, but the time they spent on their cell 

phones was only 4 to 9% of their total driving time. In the same study, 90% of drivers adjusted 

their on-board radios or CDs, but the time they spent on these tasks constituted only 1.5% of 

their total driving time. Such contrary statistics provide additional motivation for studying these 

relatively low exposure activities which prevail in so many crash and near-crash events. 

1.2 Crash Outcomes 

This thesis focuses on crash outcomes, i.e., injury severity and type of crash, which are 

important aspects to consider for policy making and design of safety systems. For example, 

policy makers may prioritise addressing distraction types that are associated with severe 

injuries. Similarly, distraction mitigation system development can be guided by information 

obtained on the association of different distraction types and crash types. 

1.2.1 Crash Injury Severity 

Several studies investigated factors which influence crash injury severities (Eluru & 

Bhat, 2007; Farmer, Braver, & Mitter, 1997; Huelke & Compton, 1995; Kim, Nitz, Richardson, 

& Li, 1995; Kockelman & Kweon, 2002). These factors include speed, seatbelt use, 

environmental conditions, vehicle types, crash types, as well as drivers’ and other occupants’ 

characteristics. Specifically, environmental conditions such as daylight, rural roads, and curves 

have been found to increase injury severities. On the other hand, crashes in bad weather, on the 
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highway, and at intersections are associated with a decrease in severe injuries (Massie, et al., 

1995; Muelleman, Wadman, Tran, Ullrich, & Anderson, 2007). Moreover, if a young driver is 

male or is drunk then the crash results in more severe injuries (Neyens & Boyle, 2008). 

However, male drivers themselves sustain less severe injuries than female drivers (Kockelman 

& Kweon, 2002).  Proper use of seatbelt and sitting at the back decrease an individual’s injury 

severity (Eluru & Bhat, 2007; Farmer, et al., 1997; Huelke & Compton, 1995; Kim, et al., 1995; 

Kockelman & Kweon, 2002). Female and old victims sustain more severe injuries (Kim, et al., 

1995). Not surprisingly, occupants of bigger and heavier vehicles, i.e., SUVs and trucks, sustain 

less severe injuries (Farmer, et al., 1997; Kockelman & Kweon, 2002). 

Drowsiness/fatigue also appears to influence injury severities. In the U.S., from 2005 to 

2009, drowsiness was a factor in 1.4% of all crashes, whereas it was a factor in 2.5% of the fatal 

ones. This descriptive statistic indicates that drowsy driving appears to be a contributing factor 

in larger proportion of fatal crashes than non-fatal crashes (NHTSA, 2011). 

Speeding has also been found to be a significant factor affecting crash injury severities. 

It is reported that an above speed limit crash is associated with more severe injuries than a 

below speed limit crash (Farmer, et al., 1997; Kockelman & Kweon, 2002). The police reports, 

which are the data sources of previously mentioned studies as well as this thesis, only capture if 

a driver was speeding or not. These reports do not include the nominal speed values, which is a 

general limitation of police-reported crash data analysis. Some of the findings presented above 

(e.g., decreased injury severity associated with bad weather) may in part be explained by the 

nominal speeds maintained before a crash.  

Speed and type of crash affect injury severity through force and area of impact (Otte et 

al., 2009). The force of impact in a rear-end crash would be expected to be smaller than that in a 

head-on crash because of likely smaller relative speeds between crashing objects. Therefore, 
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even though travelling at the same speed, occupants in a rear-end crash might sustain less severe 

injuries than occupants of a head-on crash. In fact, Kockelman and Kweon (2002) found that 

after controlling for speeding among other covariates, head-on crashes are more severe than 

rear-end crashes. In an angular crash, people in the struck vehicle sustain more severe injuries 

than those in the striking vehicle (Kockelman & Kweon, 2002). The location of impact might be 

playing a significant role here, as vehicles have more front protections than side protections. 

Limited literature investigated the associations between driver distraction and crash 

injury severities (Liu & Donmez, 2011; Neyens & Boyle, 2008; Zhu & Srinivasan, 2011). The 

results from Neyens and Boyle (2008) and Liu and Donmez (2011) suggest that distractions 

coming from external sources increase injury severities. However, these studies only focused on 

specific groups of drivers, i.e., teenage and police drivers respectively. Zhu and Srinivasan 

(2011) focused on truck drivers and found that distraction is a significant factor leading to 

severe crash injuries. Given that all three studies focused on specific populations, a study 

investigating the differences in the broader driver population is needed.  

1.2.2 Crash Type 

Non-pedestrian and non-cyclist involved crashes are generally categorized into singular, 

angular, sideswipe, rear-end, rear-rear, and head-on crashes. The General Estimates System 

(GES), which is a collection of police reported crash samples from the United States and is the 

data source for this thesis, also adopts this classification. Further details on this dataset are 

provided in Chapter 3. 

Singular crashes refer to crashes not involving other moving objects, e.g., running off 

road and colliding with a fixed object on the road. Angular crashes refer to those crashes with 

two vehicles moving in different but not completely opposing directions. There is a striking 
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vehicle and a struck vehicle in these crashes. Similarly, rear-end crashes also have a striking 

vehicle and a struck vehicle. In the pre-crash moments, the striking vehicle follows the struck 

vehicle, typically in the same lane. Sideswipe refers to crashes that involve two vehicles moving 

parallel in the same direction. Crash occurs because one of the vehicles deviates from its lane. 

Rear-rear refers to two vehicles crashing tail-to-tail; and head-on refers to two vehicles crashing 

head-to-head. Due to the relatively small number of rear-rear, head-on, and sideswipe crashes 

(less than 20% in GES), this thesis focuses on singular, angular, and rear-end crashes.  

Given that crash injury severities and crash types are closely associated (Farmer, et al., 

1997; Kockelman & Kweon, 2002), it is possible that variables affecting injury severity also 

affect crash types. Previous studies on crash types investigated environmental conditions, crash 

locations, driver behaviours, and driver characteristics (Ghazizadeh & Boyle, 2009; Neyens & 

Boyle, 2007; Ryan, Legge, & Rosman, 1998). These studies showed that variables such as road 

surface conditions, road type, time of day, and driver age are in fact significantly associated with 

crash types. Ryan et al. (1998) was based on descriptive statistics, whereas Neyens and Boyle 

(2008) and Ghazizadeh and Boyle (2009) utilized inferential statistics.  

Ryan et al. (1998) revealed age differences in crash types. They found that young drivers 

were involved relatively more in singular crashes, mid-age drivers in rear-end crashes, and old 

drivers in angular crashes. However, given that Ryan et al. (1998) was based on descriptive 

statistics, other variables, such as road type and weather, were not controlled for.  

Similar to this thesis, Neyens and Boyle (2008) and Ghazizadeh and Boyle (2009) 

utilized statistical modelling techniques and focused on three most common crash types: 

singular, angular, and rear-end. In general, angular and rear-end crashes make up a larger 

portion of crashes in urban settings than they do in rural settings; similarly singular crashes 

comprise a larger portion of crashes that occur at night than they do for crashes that occur in 
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daylight (Ghazizadeh & Boyle, 2009; Neyens & Boyle, 2007).  Moreover, the proportion of 

singular crashes on bad road surfaces is larger than that on dry road surfaces (Neyens & Boyle, 

2007). A similar effect is observed for alcohol vs. non-alcohol use and speeding vs. non-

speeding. In addition, female drivers are more likely to be involved in singular and angular 

crash than male drivers; whereas male drivers are more likely to be involved in rear-end crashes 

than females (Ghazizadeh & Boyle, 2009).  

To the author’s knowledge, Neyens and Boyle (2008) and Ghazizadeh and Boyle (2009) 

are the only studies which considered the associations between driver distraction and crash type, 

and their results seem to be inconsistent. Specifically, Ghazizadeh and Boyle (2009) found that 

drivers were less likely to be involved in rear-end crashes compared to angular crashes when 

distracted by passengers, and compared to singular crashes when distracted by in-vehicle 

electronic devices; whereas Neyens and Boyle (2007) found these contrasts to be insignificant 

for teenage drivers. These discrepancies might be in part due to different driver populations 

studied: the former used data from Missouri and looked at all driver ages, whereas the latter 

used GES and looked at teenagers. This thesis aims to build a more comprehensive model, 

which utilizes data from all ages and at a national level, and considers age – distraction 

interaction. Moreover, as stated previously, drowsiness/fatigue will also be included among 

distraction types studied. Drowsiness/fatigue is often analyzed separately from distractions and 

previous research suggests that the majority of drowsy-driving crashes are singular run-off the 

road crashes (Pack et al., 1995). 
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Chapter 2  

Effects of Distractions and Driver’s Age on Driving 
Performance and Behaviour 

ading styles 1-9 for thesis body: Heading 1 » 
Distractions and age are expected to ultimately influence crash outcomes by first 

influencing driving performance (e.g., brake reaction times) and behaviour (e.g., lane changing 

behaviours). Thus, understanding their effects on driving performance and behaviour can 

provide useful insights into the results of this thesis. The following review mainly focuses on 

experimental research in controlled settings, which lay the foundation for the discussion of 

statistical results obtained in this thesis on observational data. At times, the author has generated 

expectations regarding the results of this thesis, in particular trying to tie crash outcomes to 

performance and behaviour changes observed in controlled settings. However, due to two 

particular reasons, generating hypothesis regarding the associations between different distraction 

types and crash outcomes proved to be an impossible quest. There is minimal research explicitly 

comparing the effects of different distraction types on driving performance and behaviour.  

Moreover, task demand levels in experimental settings are generally decided and controlled by 

the researchers and might be significantly different than the likely self-paced task demands 

experienced by the drivers on the road.  

2.1 Effects of Distractions 

There have been numerous controlled studies documenting the effects of engaging in 

distracting tasks while driving (for a review see Regan, Lee, & Young (2008)). In general, these 

studies revealed that distracted drivers have slower responses to and a higher likelihood of 
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missing critical traffic events such as braking lead vehicles, pedestrian intrusions, and changing 

traffic lights. Distractions also interfere with lane keeping abilities: increasing lane deviations.  

Distractions also lead to a change in driver behaviour decreasing the frequency of lane 

changes and driving speeds, and increasing following distances. These changes indicate risk 

compensations; although it is unclear if the drivers intentionally choose to compensate for the 

effects of distractions or if there is a cognitive/perceptual saturation which lead to an 

unconscious change in behaviour.  

Although a majority of drivers self-report to compensating for the negative effects of 

distractions (Baker & Spina, 2007) (24% for passenger related, 80% for hand-held cell phone, 

and 46% for in-vehicle distractions), a simulator study by Horrey et al. (2008) showed that there 

are no significant relations between participant’s estimates of distraction effects and their actual 

performance decrements, lending support to the notion that drivers may not be well-calibrated to 

the effects of distractions. Regardless of the underlying reason, compensatory behaviours are 

expected to have a significant impact on the crash outcomes.  

2.1.1 Cell Phone and Passenger Related Distractions 

A simulator experiment with 20 subjects revealed that lane deviations were significantly 

more likely to occur when subjects were conversing on a cell phone; there were no differences 

observed between hand-held and hands-free phones (Abdel-Aty, 2003). In another driving 

simulator study, 48 subjects were asked to detect signals flashing at the edge of the simulator 

screen (Strayer & Johnston, 2001). When they were conversing on a cell phone, the probability 

of missing the signal doubled. In addition, a field experiment with 12 subjects showed a 

decreased frequency of mirror glances and an increased heart rate during a cell phone 
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conversation task, indicating a heavier information processing workload (Brookhuis, de Vries, 

& de Waard, 1991).  

Lesch and Hancock (2004) examined the effects of cell-phone conversations in a 

simulator experiment with 36 subjects. Brake reactions were slowed by 0.18 s, but stopping 

times were reduced by 0.34 s, indicating that distracted drivers pressed the brake pedal harder. 

Although these participants braked harder, they still ended up about 50% closer to intersections, 

and stop light compliance fell by 14%. These results indicate that even though distracted drivers 

tried to compensate for the delay in their initial responses by braking harder, the compensation 

was simply not enough. 

Given that conversing on the phone and with a passenger constitute similar tasks, several 

studies explicitly compared these two types of distractions. In a driving simulator experiment 

where subjects had both complex and simple conversations, cell phone and passenger 

conversations were found to equally increase mental workload (measured through pupil 

dilation) and equally degrade visual search behaviour (Nunes & Recarte, 2002). Similarly, 

another driving simulator study found that talking with a passenger and talking on a cell phone 

both marginally increased response time to a pedestrian incursion event by the same extent 

(Laberge, Scialfa, White, & Caird, 2004). Meanwhile, participants appeared to compensate for 

these performance decrements by slowing down during both distracting tasks.  

Drews et al. (2008) conducted a simulator experiment, where subjects conversed on 

daily-life topics with an experimenter acting as a passenger or talked on the cell phone with a 

real-life friend about a life-threatening past experience. These subjects also performed a 

navigation task in an urban setting, and were observed to commit more errors while conversing 

on the cell phone. Two details in this experiment need special attention. The content of the cell 

phone conversations were likely more cognitively demanding than daily-life topics. Further,  
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even though the authors claimed that the passengers mitigated their negative effects by pointing 

out traffic demands, another simulator study found that real-life friends who are passengers do 

not change the way they interact with drivers when traffic turns heavy (Laberge, et al., 2004).   

Overall, talking with passengers appears to have similar effects as talking on a cell 

phone. Moreover, talking on a cell phone appears to increase mental workload, interfere with 

effective visual scanning and detection, and diminish lateral and longitudinal control. Although 

the studies mentioned previously suggest that drivers slow down when talking on a cell phone, 

there has also been literature suggesting the opposite effect. In particular, Horberry et al. (2006) 

found that their participants maintained faster speeds when conversing on a cell phone 

compared to when they were not. This inconsistent result might be due to several factors, one of 

which is the different conversation content.  The participants in Horberry et al. (2006) answered 

binary choice questions (i.e., participants answered a series of general knowledge questions 

presented by the experimenter over the simulator’s audio system. The questions were followed 

by two alternative answers and participants had to choose the correct answer), whereas the 

participants in Nunes and Recarte (2002) and Laberge et al. (2004) had conversations involving 

story telling. 

Manipulating cell phones, i.e., dialling or texting, also have significant negative effects 

on driving performance. Dialling a cell phone impairs a driver’s ability to maintain consistent 

speed and lateral position on the road (Green, Hoekstra, & Williams, 1993; Lesch & Hancock, 

2004; Reed & Green, 1999). For instance, Brookhuis, et al. (1991)  observed that when their 

subjects manually dialled numbers, the steering wheel handling stability decreased.  

Text messaging while driving is likely riskier than simply talking on a cell phone, and 

has been shown to interfere with longitudinal and lateral control of the vehicle (Hosking, 

Young, & Regan, 2009). In a 20-subject simulator experiment, Hosking et al. (2009) found that 



14 

 

drivers’ ability to maintain their lateral position on the road and to detect and respond 

appropriately to traffic signs was significantly reduced when they were text messaging. In 

addition, the authors observed that drivers spent up to 400% more time with their eyes off the 

road when texting. The authors did not find any changes in the average speeds adopted by the 

participants. To sum up, manipulating cell phones not only significantly interferes with drivers’ 

normal visual scanning patterns; it also impairs lateral and longitudinal control. However, there 

is no evidence suggesting that drivers slow down when texting.  

Given that conversing on the phone and with a passenger are similar cognitive tasks, it is 

expected that they would have similar effects on crash outcomes; however, drivers’ 

compensation behaviours may be different for these two distraction types. Although the 

literature is not consistent with regards to this issue, there is some evidence suggesting that more 

drivers  report that they feel the need to slow down or maintain larger following distances when 

they are talking on their cell phones compared to when they are distracted by passengers (Baker 

& Spina, 2007). In addition, a simulator study revealed that subjects maintain greater following 

distances when they are talking on a cell phone than they do when conversing with a passenger 

(Amado & Ulupinar, 2005). On the other hand, manipulating a cell phone (e.g., dialling or 

texting) is a fundamentally different task than conversing on a cell phone. Although no previous 

research has explicitly compared the two, it has been suggested that manipulating a cell phone is 

likely riskier than conversing on one (Hosking, et al., 2009). Given that manipulating a cell 

phone results in visual and manual distraction and that driving is a highly visual task and also 

given that there is no evidence suggesting a reduction in speed when manipulating cell phones, 

it is expected that more serious injuries would occur when drivers are dialling or texting on a 

cell phone compared to when they are conversing on one. It should be noted that the level of 

task demand in these controlled studies were set by the experimenters and might be significantly 
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different than the likely self-paced task demands experienced by the drivers on the road. Thus, 

the confidence in such an expectation should be low.  

2.1.2 Other Types of Distraction: In-vehicle, External, Inattention, and 

Drowsiness 

Although cell phones and passenger related distractions have attracted major attention 

from the research community, other types of distractions have also been raised as concerns, in 

particular as more in-vehicle entertainment technologies are introduced in the vehicle. These 

other distraction types include in-vehicle (e.g., eating, manipulating controls) and external (e.g., 

roadside advertisements) distractions, as well as inattention (e.g., being lost in thought).  

Horberry et al. (2006) conducted a simulator experiment with 31 subjects comparing the 

effects of in-vehicle entertainment systems and cell phones. They found that subjects increased 

their speeds during cell phone conversations, but decreased their speeds during in-vehicle 

entertainment tasks (a series of car radio and cassette player manipulations). Both tasks 

degraded reactions to an unexpected hazard (i.e., a pedestrian suddenly crossing the road in 

front of the vehicle).  

Whilst eating or drinking does not seem to significantly influence driving performance 

per se, drivers’ mental workload appears to increase during these activities (Young, Mahfoud, 

Walker, Jenkins, & Stanton, 2008).  Young et al. (2008) speculate that the driving performance 

may not diminish while eating/drinking because drivers can adapt to circumstances to a certain 

extent. However, such adaptation may break down during abnormal situations, and comes at a 

cost of increased workload, potentially leading to an increase in crash risks. Because in-vehicle 

distractions, including adjusting on-board systems and eating/drinking, require similar kinds of 

attentional resources (a hand off the wheel and eyes off the road) as dialling/texting on a cell 
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phone, it is expected that they would have similar kinds of effects on crash outcomes but 

potentially with different magnitudes.  

External distractions also have significant effects on driving performance. Young and 

Mahfoud (2007) assessed the effects of roadside billboards in a simulator experiment with 48 

subjects. They found that drivers who were distracted by external advertisement boards deviated 

from their lanes more frequently and had larger variations in following distances. Distracted 

drivers also had an increased mental workload as measured through the recall of street signs (a 

secondary task workload measure). The authors found that in some occasions, distracted drivers’ 

visual attention was drawn away from more relevant road signage, suggesting a decreased 

likelihood of detecting emerging critical events. Drivers who are distracted by external objects 

look outside of the vehicle and can still pick up roadway information on their periphery as 

opposed to drivers who are distracted by in-vehicle sources. Thus, crashes resulting from 

external distractions may not be as severe.  

Driver’s attention might also diminish in the absence of non-driving-related activities, 

e.g., being lost in thought (Klauer, Dingus, Neale, Sudweeks, & Ramsey, 2006). Some studies, 

including this thesis, treat inattention in the absence of non-driving-related activities as a 

distraction category (Ranney, Mazzae, Garrott, & Goodman, 2001), whereas others distinguish 

inattention from distraction (Beirness, 2002). Regardless of categorization, inattention in the 

absence of non-driving-related activities is a potential problem for traffic safety and needs to be 

studied.  

It should be noted that mental tasks utilized in a controlled experiment are different from 

what people normally do, e.g., daydreaming and being lost in thought. Due to the difficulty of 

manipulating such implicit activities, experiments on this topic are rare. Given that inattention 

(i.e., lost in thought and looked but did not see) does not demand visual or manual resources, 
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which are highly important in driving, and given that drivers still adopt less risky behaviours 

when performing cognitively demanding tasks, it is expected that this distraction type would not 

affect crash outcomes as much as previously discussed ones.  

A few studies evaluated the effects of cognitive tasks on driving performance. Recarte 

and Nunes (2003) conducted an experiment with 12 subjects driving an instrumented vehicle in 

real traffic. Mental tasks were introduced to subjects in the form of verbal learning 

(summarizing a long verbal speech) and verbal reproduction (reproducing a short verbal 

statement). Their results suggest that these mental tasks induced spatial gaze concentration as 

well as visual-detection impairment (late detection and poor identification). Lavalliere et al. 

(2011) monitored 106 drivers in an instrumented vehicle under varying levels of cognitive 

demand by utilizing a number recall task. Regardless of demand level, cognitive workload 

reduced the likelihood of lane changes and resulted in slower speeds. Thus, purely cognitive 

distraction can lead to a less effective visual scanning behaviour. However, drivers also appear 

to compensate for such degradation by reducing the driving demands.   

As mentioned previously, drowsiness can lead to a withdrawal of attention from the 

roadway and is included in this thesis as a type of distraction. The effects of drowsiness on 

accidents has been investigated widely (for a review see Dinges (1995)). Drowsiness/fatigue is, 

in general, associated with slower reaction times and a deficit in information processing. In the 

driving context, Ingre et al. (2006) examined the performance of drowsy drivers in two 

simulator sessions: after a normal night sleep and after working a night shift. Before each 

session, the subjects also evaluated themselves on a sleepiness scale. Results showed that a high 

sleepiness rating is positively correlated with increases in lateral deviations and eye blink 

durations. As reported previously, the majority of drowsy-driving crashes are singular crashes 

off-the road (Pack, et al., 1995). Based on these findings, it is expected that drowsy drivers 
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would be more likely to be involved in singular crashes, which are run-off-road crashes (also 

referred to as lane departure accidents). However, it is not clear as to how drowsiness effects 

would compare to the effects of other distraction types.  

2.2 Age Differences 

In general, older drivers maintain lower speeds and larger following distances than 

younger drivers (Boyce & Geller, 2002), exhibit fewer lane changes than mid-age drivers, and 

travel in the left most lane less often than both young and mid-age drivers (Lavalliere, et al., 

2011). However, the U-shaped crash risk function suggests that older drivers differ from 

younger and mid-age drivers more than just in conservativeness in behaviour. Working memory, 

vision, judgment, and how they cope with distracting activities all have profound implications 

for different age groups in terms of their exhibited driving behaviour and performance, and thus 

the outcomes of their crashes. 

2.2.1 Working Memory 

Since distraction taxes drivers’ working memory, it is necessary to understand how 

working memory limits differ across age groups. In a driving simulator experiment, the effects 

of a visual/verbal memory task were examined (Bao, Kiss, & Wittmann, 2002). Older 

participants (ages 60 to 80) and younger participants (ages 20 to 31) performed one of three 

tasks: a memory task (in which German words were presented visually in various colour, shape, 

size, and location), a driving task (in which participants were instructed to stay in the right lane 

and brake upon seeing a red light), or a dual task (in which both the memory and driving tasks 

were performed at the same time). Older participants remembered fewer words on the memory 

task than younger participants. The memory task prolonged older participants’ reaction times to 
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the red light and increased their number of lane deviations, while younger participants were 

unaffected.  

de Ridder et al. (2002) examined spatial memory via two experiments with the same 

experimental design: one conducted in a simulator, the other one on the road. In these 

experiments, older (average age: 71.3) and younger (average age: 27.4) subjects drove a set 

route through a neighbourhood, while the experimenter pointed out particular landmarks to be 

remembered by the subject. After the first session, subjects were instructed to drive to various 

locations in the neighbourhood and to point out these landmarks. Older subjects had larger 

errors in recalling the intersections and the landmarks than younger subjects. The trends 

observed in the simulator was the same as the ones observed on the road, generalizing the 

validity of findings obtained through a virtual driving task where the experimenters had more 

control over extraneous variables. In general, older drivers have low working memory capacity 

than younger drivers, and thus may be influenced more by distractions than younger drivers.   

2.2.2 Vision 

As humans age, their visual capabilities, such as visual detection, get impaired. Being 

able to detect and identify objects in the periphery of the visual field during a complex driving 

task is important to anticipating impending hazards (e.g., pedestrian detection). In a driving 

simulator study, Chaparro and Alton (2000) observed older (ages 64 to 85) and younger subjects 

(ages 18 to 41) as they drove in either a heavy or light traffic condition. In general, older 

subjects drove slower, had more accidents, and correctly identified fewer letters in a 

simultaneous peripheral letter task. The older subjects’ higher accident and lower correct letter 

identification rates were amplified by the increase in traffic complexity. The authors pointed out 
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that the results may have been influenced by the fact that older subjects may have had more 

difficulty adapting to the driving simulator.  

Apart from the differences in peripheral vision, the visual sampling methods are also 

different between novice drivers (who are generally younger) and experienced drivers (who are 

generally mid-age or older). Novice drivers concentrate their search in a smaller area, close to 

the front of the vehicle when compared to more experienced drivers (Mourant & Rockwell, 

1972).  

2.2.3 Collision Judgment 

DeLucia et al. (2003) examined age differences in collision judgment. The authors 

conducted three experiments with younger (ages 18 to 29) and older subjects (ages 50 to 76). In 

the first experiment, participants observed a rectangular object that moved toward a pole from 

both moving and stationary viewpoints. The results showed that older subjects made more 

conservative judgments about when the objects would collide, i.e., anticipated shorter time to 

collisions (TTCs). In the second experiment, participants observed two cubes, either on course 

to collide or not to collide from both moving and stationary viewpoints. The result was that the 

younger subjects made more accurate judgments on whether there would be a crash, and more 

accurate judgments on the TTC when there was a crash. In the third experiment, where displays 

were more egocentric, square objects approached the observer, who had both moving and 

stationary viewpoints. The older participants again had shorter TTC judgments than younger 

participants. Thus, older drivers appear to have higher thresholds for TTC acceptance than 

younger drivers. For example, when stopped at an intersection, an older driver may accept a 10-

second gap and proceed to join the traffic, but reject a 6-second gap and wait at the stop sign; 

while a younger driver may accept the 6-second gap.  
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2.2.4 Coping with Distractions 

In a driving simulator study, older (aged 65 to 74) and younger subjects (aged 18 to 25) 

performed a simple driving task in which they followed a lead vehicle, and a distracted driving 

task in which they conversed with the experimenter by using a hands-free cell phone (Strayer & 

Drews, 2004). Overall, older subjects drove slower and with greater following distances than 

younger subjects. Although both younger and older subjects were affected by the cell-phone 

task, as suggested by the delay in braking onset and the increase in following distances, the 

brake reaction times of younger subjects when distracted were equivalent to that of older 

subjects when not distracted. Thus, conversing on a cell phone degraded the reaction times of 

young subjects to the level of older subjects who were not engaged in a phone conversation.  

Lavalliere et al. (2011) monitored 106 drivers from three age groups (20-29, 40-49, and 

60-69) in an instrumented vehicle under varying levels of cognitive demand. The results showed 

that the 40’s age group had a 115% higher likelihood of exhibiting lane changes than the 60’s 

group. In addition, drivers in their 20’s and 40’s travelled more often in the leftmost lane 

compared to drivers in their 60’s. These results suggest that older adults adopt a more 

conservative driving style by not traveling in the leftmost lane as much as the younger groups 

and being less likely to change lanes than drivers in their 40’s. Regardless of demand level, 

cognitive workload reduced the likelihood of lane changes for all age groups. This suggests a 

tendency in drivers of all ages to regulate their behaviour in a risk reducing direction in response 

to added cognitive demand. 

The results of these two experiments indicate no evidence that older subjects were 

coping with distractions better than younger subjects. Nor did they support that younger subjects 

were less affected by distracting tasks. Further controlled and naturalistic studies examining 

age-distraction interactions are needed.  
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2.3 Gaps in the Literature and Thesis Objectives 

Crash injury severity has been widely studied. For example, Kockelman and Kweon 

(2002) adopted an ordered probit model and Xie (2009) utilized a Bayesian ordered probit 

model to predict injury severity for various factors, such as driver’s age, gender, alcohol use, 

and vehicle type. However, the associations between driver distraction and injury severity have 

not been widely studied. To our knowledge, only two injury severity studies have focused on 

different types of driver distraction, but they were limited to police and teenage drivers 

respectively (Liu & Donmez, 2011; Neyens & Boyle, 2008). Thus, further research is needed to 

assess the effects of different distraction types on injury severity given various driver 

demographics.  

Study One in the following section extends the scope of previous studies by considering 

drivers of all age groups rather than just young drivers. With the proliferation of technology and 

in-vehicle devices used by drivers of all ages, this study tries to investigate the influence of age-

distraction interaction on crash injury severities. Investigation is carried out by employing an 

ordered logit model to predict how driver distraction and age influence the odds that an 

occupant will sustain a severe injury. As an initial step to addressing this research gap, Study 

One focuses on two-vehicle crashes only.  

Another important aspect of the increased risks for distracted drivers is how such risks 

translate into the frequency of different crash types. The three most common types of crashes 

are: angular crash with another vehicle, rear-end crash, and crash with a fixed object 

(Ghazizadeh & Boyle, 2009). Rear-end crashes usually occur when vehicles are traveling in the 

same direction and can be attributed to very short headways and failure to brake appropriately. 

Angular crashes usually involve colliding with vehicles not travelling in the same direction and 
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can be attributed to improper lane changing decisions and lane keeping (Neyens & Boyle, 

2007). Crashes with fixed objects are typically due to failures to observe fixed objects on the 

road or to maintain lateral position. These differences are important when considering what 

factors are likely to be involved in crashes and how crash risks associated with these crash types 

can be mitigated. 

To the author’s knowledge, Neyens and Boyle (2008) and Ghazizadeh and Boyle (2009) 

are the only studies which considered the associations between driver distraction and crash type. 

However, neither of these studies investigated how age enters in to the picture.  The goal of 

Study Two, presented in Chapter 4, is to provide insights into how distractions and driver’s age 

influence the odds that a driver will be involved in a particular type of crash. A multinomial 

logit model is built to address this research objective. The focus is on vehicles that were in a 

singular crash, vehicles that struck a lead vehicle from the rear, and vehicles that struck another 

vehicle or were struck in an angular crash.  

Finally, although drowsiness/fatigue has been studied widely, it has not been compared 

to other distraction types explicitly. Both Study One and Study Two consider drowsiness/fatigue 

as a distraction type given that it results in progressive withdrawal of attention from the roadway 

(Williamson, 2009).   
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Chapter 3  
Study One: Effects of Distractions and Driver’s Age on Injury 

Severities 

ading styles 1-9 for thesis body: Head Heading 1 » 
By employing an ordered logit model, this study aims to estimate whether driver 

distraction, drivers’ age, or their interaction have significant effects on crash injury severities. 

The dependent variable utilized is the injury severity of occupants involved in a crash, including 

the drivers and their passengers. In addition to the main and interaction terms of distraction type 

and driver age, the model statistically controls for other factors such as environmental and 

crash-specific factors. An ordered logit model is an extension of the binary logistic model, but 

has the capability of treating multi-level categorical response variables that have an inherent 

order. Like the logistic model, both numerical and categorical explanatory variables can be 

included.  

3.1 Data Description 

As mentioned in Chapter One, data from the General Estimates System (GES) from the 

year 2003 to the year 2008 were used in this model, because GES has the best driver distraction 

information for the longest period of time at a national level (U.S.). Although distracted driving 

constitutes a small fraction of the sample population, the mere size of the dataset (202,808 crash 

occupant records) made it possible to draw inferences on crashes with distracted drivers. A 

general limitation with the use of crash databases is that these data are based on police reports 

and may present a biased sample (Muelleman, et al., 2007). For example, driver distraction 

might be underreported, especially if there are fatalities. Further, it is also possible that drivers 

may not be honest in reporting their distracting activities due to social acceptability (e.g., not 
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reporting that they were distracted or stating that they were lost in thought when they were 

actually texting on a cell phone). In the 100-car naturalistic study, Dingus et al. (2006) observed 

that 80% of crashes and 65% of near-crashes involved driver distraction, while in GES, only 

21% of drivers were reported to be involved in distracting activities. However, it should be 

noted that the majority of the 69 crashes observed were low-g-force physical contact or tire 

strikes, which did not cause property damage, hence are not police-reported crashes. Thus, the 

100-car naturalistic study only had a very small number of crashes (a total of 12 were reported) 

that are representative of police-reported crashes. Still, the underreporting issue had been 

acknowledged previously, and several states are making efforts to collect better data on driver 

distraction (Sundeen, Accessed July 31, 2010); however, it is a drawback for all studies based 

on police-reported data.  

The GES dataset is a stratified weighted sample of crashes, representing national crash 

trends, and includes information on several aspects of a crash such as driver and passenger 

demographics, crash types, types of distractions, and injury severities. GES classifies injury 

severity by an ordinal scale with levels of no or possible injuries, non-incapacitating, 

incapacitating, and fatal injuries. The crash data were collected retrospectively; therefore 

exposure information (e.g., the amount of time spent performing distracting activities and how 

much people drive) is unavailable. As a result, the current study cannot assess crash risk. This 

study rather focuses on the crash outcome, in particular the injury severities, given that a crash 

has already occurred. GES identifies the driver that is distracted, however it does not provide 

information on which driver is at fault or the root cause of a crash. Thus, the results of this study 

should also not be viewed as claiming causation.  

This thesis aims to assess associations between age-distraction interaction and crash 

injury severities. As a first step in understanding these associations, this thesis focuses on two-
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vehicle crashes, for which the first harmful event is the direct crash of two moving vehicles. 

There are two reasons for focusing on this specific type of crashes. First, the number of potential 

factors affecting such crashes is limited compared to crashes which involve third party vehicles, 

persons, or objects. Thus, modelling is relatively easier. Second, the victims of two-vehicle 

crashes represent the largest proportion of all crash victims (approximately 80%) according to 

GES data from 2003 to 2008. It is reasonable to consider the vast majority before going into 

details for other crash types. 

3.2 Distraction Type Classification 

The following distraction types are reported in GES and have been included in the 

analysis. These levels were coded in GES as mutually exclusive, that is, a driver was not 

reported to belong in more than one level.  

• In-vehicle distraction (in-vehicle physical activities such as eating, drinking, and using 

entertainment and A/C systems)  

• Passenger related distraction 

• Talking on a cell phone  

• Dialling/texting on a cell phone  

• External distraction (paying attention to non-driving related objects outside of the 

vehicle, e.g., commercial boards, natural scene, or people off the road) 

• Inattention (“looked but did not see” and “being lost in thought”)  

• Drowsiness 

• No distraction  
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In order to detangle the effects of different distraction types, crashes where both drivers 

were identified to be distracted were excluded from analysis. For example, if one driver is 

inattentive and the other one is distracted by an in-vehicle source, then it is impossible to 

separate the effects of inattention and in-vehicle distractions on the injury severities observed in 

this particular crash.  

3.3 Model Covariates 

The model was built using an observation for each occupant (either driver or passenger) 

involved in the crash. The response variable is the injury severity for that occupant. The 

observation for each occupant was also accompanied by information on both of the drivers 

involved in the crash, such as age, and gender. Thus, the characteristics of both drivers were 

used as covariates for all occupants. Other covariates included in the model account for the 

environmental conditions, crash profile, and occupant information. 

Poor lighting conditions have been shown to increase crash risk (Massie, et al., 1995). 

Lighting was therefore included as a variable with two categories: daylight vs. non daylight. 

Previous research revealed that crash location influences injury severity (Muelleman, et al., 

2007). Thus, urban/rural and highway/non-highway roads were included in the model. Road 

alignment (curvy vs. straight) and relation to junctions (intersection vs. non intersection) were 

also included. Given that weather and road surface conditions are closely related, only weather 

(good vs. bad) was included in the model. 

Three variables describing the crash profile were used: alcohol use, speeding, and crash 

types. These three variables were previously shown to influence injury severity (Kockelman & 

Kweon, 2002; Neyens & Boyle, 2008). In the dataset, angular (36%) and rear-end (42%) crashes 

constitute the majority of two-vehicle direct crashes, and the rest of the four types (sideswipe 
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passing, sideswipe meeting, backed-into, and head-on) constitute less than 22%. Thus, in the 

model, three types of crashes were included: angular, rear-end, and other.  

There are discrepancies across how researchers classify different age groups. Common 

age thresholds used in driving safety and injury assessment are 25 and 65 (Margolis et al., 2002; 

McGwin, Sims, Pulley, & Roseman, 2000). Thus, this thesis adopts these thresholds for 

categorizing both drivers’ and passengers’ age. Occupants’ (i.e., drivers and passengers) age 

was defined to have three levels: less than 24 years old, 25 to 64 years old and 65 years old and 

up. The gender and the seating position (front or back) of the occupant were also included in the 

model. Seatbelt use was another variable used in the model; it has been shown to be a significant 

factor in injury severity (Kockelman & Kweon, 2002). 

The majority of previous injury severity studies account for the characteristics of only 

the driver of the vehicle which the occupant belongs to (Kockelman & Kweon, 2002; Neyens & 

Boyle, 2008). Given that the at-fault driver is not identified in GES, it is important to account 

for the characteristics of the other vehicle’s driver as well. Thus, driver demographics were 

incorporated in the model as combinations of the two drivers’ profiles. Drivers’ gender has three 

levels: one male and one female, both male, or both female drivers. As discussed above, the age 

groupings for drivers were based on commonly used thresholds: young (16 to 24), mid-age (25 

to 64), and old (65 and up). Thus, drivers’ age had six levels: both young, one young and one 

mid-age, one young and one old, both mid-age, one mid-age and one old, and both old. 

3.4 Descriptive Statistics 

A weighted total of 23,525,830 occupants (202,808 un-weighted), including 17,196,621 

drivers (148,246 un-weighted), were included in the model. 19.7% of the drivers were reported 
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to be either distracted or drowsy. Moreover, the proportion of crashes involving different 

distractions varied across age groups.  

 

Table 1: Injury severity data: weighted frequencies of drivers that were involved in a 

crash (percentage in row total) by driver age and distraction type 

* Percentage in row total 

 

Table 1 is based on the weighted count of drivers in the dataset. It presents each age 

group’s proportion in the entire driver sample (last row percentages) and each age group’s 

proportion within a particular distraction type (cell percentages excluding the last row). Mid-age 

drivers represent the largest proportion at 59.7%, followed by young drivers at 30.8%, and 

finally old drivers at 9.5%.  

Young drivers represent a larger portion among distracted drivers (32.6% - 46.2%), then 

they do among non-distracted drivers (30%). Their portions peak for cell-phone related 

distractions (dialling/texting on the cell phone: 46.2%; talking on the cell phone: 44.1%).  

Compared to their proportion in non-distracted drivers (60.4%), mid-age drivers’ proportion in 

all distraction categories but the passenger-related category (61.9%) is lower.  As for older 

Type of distraction 
Driver’s age 

Row total 
Young Mid-age Old 

Inattention 843,765 (32.6%)* 1,450,602 (56.1%) 289,921 (11.2%) 2,584,288 

In-vehicle sources 72,842 (39.8%) 103,770 (56.7%) 6,347 (3.47%) 182,959 

Passenger related distraction 30,168 (36.3%) 51,497 (61.9%) 1,540 (1.85%) 83,206 

Dialling/texting on cell phone 17,882 (46.2%) 20,738 (53.5%) 122 (0.31%) 38,743 

Talking on cell phone 25,779 (44.1%) 30,041 (51.4%) 2,662 (4.55%) 58,482 

External distraction 111,628 (38.3%) 158,174 (54.2%) 21,957 (7.53%) 291,759 

Drowsiness 31,584 (36.9%) 48,933 (57.2%) 4,990 (5.84%) 85,507 

No distraction 4,059,446 (30.0%) 8,185,817 (60.4%) 1,266,416 (9.35%) 13,551,679 

All drivers (column total) 5,193,094 (30.8%) 10,409,572 (59.7%) 1,593,955 (9.50%) 17,196,621 
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drivers, their proportion in all distraction categories except inattention (11.2%) is lower than 

their proportion among non-distracted drivers (9.35%).  

3.5 Ordered Logit Model 

An ordered logit model was built using the GENMOD procedure in SAS (Statistical 

Analysis System) version 9.2. Based on the GES data, injury severity is classified on an ordinal 

scale with levels of no or possible injuries, non-incapacitating, incapacitating, and fatal injuries. 

This model predicts the odds of severe injuries given that a crash has occurred. Therefore, the 

results should not be interpreted as crash risk or the odds of being involved in a crash with a 

certain level of injury severity. Odds of a severe injury are defined as the probability of a more 

severe injury divided by the probability of a less severe injury. A higher value of odds indicates 

a higher likelihood of a more severe injury (same as moving up on the ordinal scale). Moreover, 

if the value of odds is larger than one, then the probability of observing a more severe injury is 

greater than 50%. 

An ordered logit model provides a strategy that takes into account the ordinal nature of 

data (Stokes, Davis, & Koch, 2000) and is represented with a set of equations as: 
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where p1 represents the probability of a fatal injury, p2 represents an incapacitating injury, and 

p3 represents a non-incapacitating injury. Thus, the equations represent the log-odds of severe 

injuries for:  “fatal” versus “incapacitating”, “non-incapacitating”, and “no injuries” (eqn. 1); 

“fatal” and “incapacitating” versus “non-incapacitating” and “no injuries” (eqn. 2); “fatal”, 

“incapacitating”, and “non-incapacitating” versus “no injuries” (eqn. 3). β0i represents the 

intercept and β is the matrix of coefficient estimates for predictor variables, X. 

A general issue with statistical models built on crash data is the incorrect assumption of 

independent observations. In theory, there are dependencies in crash data, as there can be 

multiple injuries within a vehicle and multiple vehicles involved in a crash. An ordered logit 

model is theoretically not appropriate for dependent data. However, in practice, logit models 

give approximate results that are very close to theoretically correct models such as general 

estimating equations (GEE) and multilevel logistic models, which themselves face many 

assumption issues when applied to crash data (Lenguerrand, Martin, & Laumon, 2006). Thus, 

this thesis used an ordered logit model with the assumption of independence.  

Specific contrasts of interest were setup using the “estimate” statement in SAS, which 

provided odds ratios. The odds ratio is the ratio of odds of an event (e.g., a more severe injury) 

occurring in one group (e.g., inattentive drivers) to the odds of it occurring in another group 

(e.g., non-distracted drivers). An odds ratio greater than 1 indicates that the group in the 

numerator has higher odds than the group in the denominator.  

3.6 Model Results 

Tables 2, 3, and Figure 1 present the results obtained through contrasts of interest. The 

results are reported in terms of increasing injury severity, that is, the greater the estimated 

contrast coefficient and corresponding odds ratio, the higher the likelihood of a more severe 
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injury. Given the large sample size, a confidence level of 99.9% (or α = .001) was adopted for 

determining statistical significance.   

 

Table 2: Injury severity results for model covariates (excluding distraction and driver age, 

which are reported in Table 3) 

* All estimates are significant at p<.0001 

 

The estimates reported in Table 2 show that in general, among environmental factors, 

crashes in non-daylight conditions (OR=1.16), rural roads (OR=1.29), and curvy roads 

(OR=1.18) had higher odds of resulting in more severe injuries. In contrast, adverse weather 

(OR=0.88) and highway driving (OR=0.94) resulted in decreased odds. These findings were in 

accordance with (Neyens & Boyle, 2008), which focused only on teenage drivers. Crashes on 

Comparisons    Estimate* Odds Ratio  (OR) 95% Confidence 
Interval (CI) 

Environmental conditions    
Non daylight vs. daylight 0.14 1.16 1.15 – 1.16 
Rural vs. urban 0.25 1.29 1.29 – 1.29 
Curvy vs. straight road 0.17 1.18 1.18 – 1.19 
Bad vs. good weather -0.12 0.88 0.88 – 0.89 
Highway vs. non highway -0.06 0.94 0.94 – 0.95 
Intersection vs. non intersection -0.09 0.91 0.91 – 0.92 

Crash profile    
Alcohol vs. no alcohol 0.81 2.24 2.23 – 2.26 
Speeding vs. no speeding 0.19 1.20 1.20 – 1.21 
Angular vs. rear-end crash 0.55 1.74 1.73 – 1.74 

Occupants (drivers and passengers)    
Female vs. male 0.58 1.79 1.79 – 1.80 
Seatbelt vs. no seatbelt -0.61 0.54 0.54 – 0.54 
Front seat vs. back seat 0.22 1.24 1.24 – 1.25 
Young vs. mid-age -0.31 0.73 0.73 – 0.73 
Old vs. mid-age 0.03 1.03 1.03 – 1.04 

Drivers’ gender (baseline: both male)    
Female & male -0.13 0.88 0.88 – 0.89 
Both female -0.23 0.80 0.80 – 0.80 
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intersections had a lower likelihood of resulting in more severe injuries than crashes on non-

intersections (OR=0.91). When a crash involved alcohol (OR=2.24) or speeding (OR=1.20), 

likelihood of more severe injuries increased. Angular crashes were more likely to result in more 

severe injuries than rear-end crashes (OR=1.74). This effect was in line with (Kockelman & 

Kweon, 2002) and might be due to the potentially higher relative speeds in angular crashes and 

fewer side-protection systems in vehicles. 

As expected, occupants’ injury severities were significantly associated with occupants’ 

age, gender, seating position, and seatbelt use (Kockelman & Kweon, 2002). Female occupants 

were more likely to sustain more severe injuries than male occupants (OR=1.79). Using a 

seatbelt decreased the odds of more severe injuries (OR=0.54), whereas sitting in the front 

increased the odds (1.24). Compared to the baseline of two male drivers, a female and a male 

(OR=0.88) drivers’ crash and two female drivers’ crash (OR=0.80) were likely to result in 

decreased injury severities.  

As reported in Table 3, comparisons were drawn in three separate age groups with 

distracted drivers versus non-distracted drivers in the same age group. Thus, effects of 

distractions for different age groups were analysed. For young drivers, dialling or texting on cell 

phone (OR=1.94) yields the highest likelihood of severe injuries observed in a crash. Other 

distractions such as in-vehicle sources (OR=1.22) and passengers (OR=1.10) have lower odds 

but still result in a higher likelihood of more severe injuries compared to no distraction. On the 

other hand, inattention (OR=0.91), talking on the cell phone (OR=0.91), and external 

distractions (OR=0.51) decrease the likelihood of severe injuries compared to no distraction. 

Last but not least, crashes involving drowsy (OR=1.58) young drivers are more likely to result 

in severe injuries than those involving non-distracted young drivers. Thus, for young drivers, 

there is a 50% increase in odds. Interestingly, for mid-age and old drivers, drowsiness is 
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accompanied by more than 3-folds of increase (OR=3.4 and OR=3.26) in the odds of a more 

severe injury compared to non-distracted mid-age and non-distracted old drivers respectively.  

 

Table 3: Injury severity results for distraction type and driver age 

* All estimates are significant at p<.0001 

 

Within the mid-age drivers group, inattention (OR=0.84) and external distraction 

(OR=0.93) appears to be protective. However, unlike the young drivers group, talking on cell 

phone (OR=1.21) results in a more severe crash compared to no distractions. Other distractions, 

i.e., in-vehicle sources (OR=1.65), passengers (OR=1.51), and dialling or texting on the cell 

phone (OR=1.33), are associated with higher odds of severe injuries. In crashes that involve an 

Comparisons Estimate* OR 95% CI 

Distracted young driver vs. non-distracted young driver  
Inattention -0.10 0.91 0.90 – 0.92 
In-vehicle sources 0.20 1.22 1.19 – 1.26 
Passenger related distraction 0.10 1.10 1.06 – 1.13 
Dialling or texting on cell phone 0.66 1.94 1.85 – 2.02 
Talking on cell phone -0.09 0.91 0.87 – 0.96 
External distraction -0.67 0.51 0.51 – 0.50 
Drowsiness 0.45 1.58 1.51 – 1.64 

Distracted mid-age driver vs. non-distracted mid-age driver  
Inattention -0.18 0.84 0.83 – 0.84 
In-vehicle sources 0.50 1.65 1.62 – 1.68 
Passenger related distraction 0.41 1.51 1.47 – 1.54 
Dialling or texting on cell phone 0.28 1.33 1.26 – 1.39 
Talking on cell phone 0.19 1.21 1.16 – 1.27 
External distraction -0.07 0.93 0.92 – 0.95 
Drowsiness 1.22 3.40 3.30 – 3.50 

Distracted old driver vs. non-distracted old driver   
Inattention -0.07 0.93 0.92 – 0.94 
In-vehicle sources 0.56 1.75 1.65 – 1.85 
Passenger related distraction 0.36 1.44 1.24 – 1.67 
Dialling or texting on cell phone 1.26 3.51 2.56 – 4.82 
Talking on cell phone 0.76 2.14 1.85 – 2.48 
External distraction -0.59 0.56 0.52 – 0.59 
Drowsiness 1.18 3.26 2.27 – 4.69 
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old driver, odds of having severe injuries is less if the old driver is inattentive (OR=0.84) or 

distracted by things outside of the vehicle (OR=0.93) than crashes which involve a non-

distracted old driver. Dialling or texting (OR=3.51) and talking on the cell phone (OR=2.14) 

appear to be the most harmful distraction types for old drivers in regards to a severe crashes. 

Crashes involving old drivers who are distracted by in-vehicle sources (1.75) or passengers 

(1.44) are also associated with higher odds of resulting in more severe crashes.  

Figure 1 helps visualize the results discussed above by comparing different age-

distraction combinations to a single baseline: non-distracted mid-age drivers. When there is no 

distraction involved in a crash, crashes involving young drivers are associated with higher odds 

of severe crash injuries compared to crashes involving old or mid-age drivers. Distractions 

appear to have more profound effects on old drivers than young and mid-age drivers. To 

summarize, inattention and external distractions have consistent effects across age groups. They 

are associated with a reduced likelihood of severe injuries.  Dialling or texting on the cell phone 

is particularly harmful in crashes involving old and young drivers. On the other hand, talking on 

the cell phone appears to be protective for young drivers but harmful for old drivers.  
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 Figure 1: Injury severity odds ratios for different distraction and driver age groups (baseline: non-distracted m
id-age driver; 

error bars indicate 95%
 confidence intervals) 
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Chapter 4  

Study Two: Effects of Distractions and Driver’s Age on 
Crash Type 

ing 1 » 
By employing a multinomial model, this study aims to estimate whether driver 

distraction, driver age, or their interaction have significant effects on crash types. The dependent 

variable utilized is the type of crash. In addition to the main and interaction terms of distraction 

type and driver age, the model statistically controls for other factors such as environmental and 

crash-specific factors. A multinomial model is an extension of the binary logistic model, but has 

the capability of treating multi-level categorical response variables that have no apparent 

inherent order. Like the logistic model, both numerical and categorical explanatory variables can 

be included in the model.  

4.1 Data Description 

GES data from 2003 to 2008 were also used in this model. Given that rear-end, angular, 

and singular crashes constitute the majority of crashes in the GES sample (81%), this study 

focused on these three crash types. The dataset used in this study is different from that used in 

the previous model (Study One) in two ways. First, because this study concerns only crash type, 

passenger information is not included. Second, for the purpose of simplifying inferences, the 

previous analysis (Study One) utilized only two-vehicle direct crashes. The current study 

includes singular crashes in addition to two-vehicle direct crashes (i.e., rear-end and angular 

crashes). However, the struck vehicles in rear-end crashes are excluded given that the following 

(or striking) vehicle is generally at fault in rear-end crashes. Thus, drivers in rear-end crashes 

refer to those who crash into a lead vehicle due to improper braking or following too close. 
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Drivers in singular crashes refer to those who collide with a fixed object on the road or on the 

side of the road. Unlike previous research on this topic which did not distinguish struck and 

striking vehicles (Ghazizadeh & Boyle, 2009; Neyens & Boyle, 2007), angular crashes were 

separated into two categories: striking vehicle and struck vehicle. The striking vehicle’s front 

hits the struck vehicle, whereas the struck vehicles are hit from the side.  

4.2 Descriptive Statistics 

A weighted total of 4,497,107 crashes (38,669 un-weighted) and 6,228,231 drivers 

(53,555 un-weighted) were included in this study.  The most common crash type is angular 

(40%), followed by rear-end (39%), with the least common being singular (21%).   

 

Table 4: Crash type data: weighted frequencies of drivers that were involved in a crash 

(percentage in row total) by driver age and crash type 

Crash type 
Driver’s age 

Row total 
Young Mid-age Old 

Singular crash 397,791 (41.9%) 519,495 (54.7%) 32,927 (3.47%) 950,213 

Rear-end crash (striking) 609,546 (34.5%) 1,085,935 (61.5%) 70,732 (4.00%) 1,766,213 

Angular crash (striking) 500,171 (28.1%) 1,151,368 (64.7%) 129,142 (7.25%) 1,780,681 

Angular crash (struck) 466,506 (27.0%) 1,139,244 (65.8%) 125,373 (7.24%) 1,731,123 

All drivers (column total) 1,974,014 (31.7%) 3,896,042 (62.6%) 358,175 (5.75%) 6,228,231  

* Percentage in row total 

 

Table 4 is based on the weighted count of drivers in the dataset. It presents each age 

group’s proportion in the entire driver sample (last row percentages) and each age group’s 

proportion within a particular crash type (cell percentages excluding the last row). Mid-age 

drivers represent the largest proportion at 62.6%, followed by young drivers at 31.7%, and 

finally old drivers at 5.75%. It should be noted that the data from same angular crashes are 
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repeated twice in Table 4: for drivers in the striking vehicle and for drivers in the struck vehicle. 

One would expect that the numbers for striking and struck drivers should be the same, however, 

due to missing variables for some of the drivers, not all drivers were included in the analysis. In 

particular, it appeared that the distraction type information was missing especially for drivers in 

the struck vehicle. 

Compared to their overall proportion (31.7%), young drivers represent a larger portion in 

singular (41.9%) and rear-end (34.5%) crashes. Mid-age and old drivers have larger proportions  

in angular crashes (64.7% and 65.8% for mid-age, and 7.25% and 7.24% for old) than they do in 

the entire driver sample (62.6% for mid-age and 5.75% for old). These trends are more apparent 

in Figure 2, where proportions are calculated in a different way as explained below. 

 

Figure 2: Rate of different crash types observed for young, mid-age, and old drivers 
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Percentages in Figure 2 represent the proportion of each crash type within a particular 

age group. Thus, the four corners of each series (young, mid-age, and old) add up to 100%. The 

trends described in the previous paragraph are also apparent in this figure: one can see a shift 

from the first quadrant (singular and rear-end) to the third quadrant (angular striking and angular 

struck) as age increases. The underlying reasons for this trend cannot be investigated within this 

thesis given that crash reports are collected after the occurrence of events; thus cannot be used to 

assess crash risks. Future research should investigate the reasons for this trend. 

4.3 Multinomial Model 

The model covariates are the same as the ordered logit model described in Chapter Three 

with only a few exceptions. First of all, occupant information is not included in the model; only 

the driver’s information is included. Moreover, crash type was included as a covariate in 

Chapter Three, whereas it is the dependent variable in this multinomial logit model.  The 

definitions and levels of the covariates, such as age, are kept the same.   

A multinomial model was built using the MLOGIT procedure in LIMDEP version 8. 

Based on the GES data, collision type is classified into three levels: single-vehicle, rear-end, and 

angular (striking or struck). The model predicts the odds of being involved in a particular type 

of crash given that a crash has occurred. Therefore, the results should not be interpreted as crash 

risk of a certain collision type.  

A multinomial model provides a strategy that takes into account the nominal nature of 

data (Stokes, et al., 2000) and is represented with a set of equations as: 

βX+=⎥
⎦

⎤
⎢
⎣

⎡
01

0

1ln β
p
p      (4) 
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where p0 represents the probability of a rear-end crash, p1 represents the probability of a 

singular crash, p2 represents the probability of an angular-striking crash, and p3 represents the 

probability of an angular-struck crash. Thus, the equations represent the log-odds of collision 

types for:  “single-vehicle crash” versus “rear-end crash” (eqn. 4); “angular striking” versus 

“rear-end crash” (eqn. 5); “angular struck” versus “rear-end crash” (eqn. 6). β0i represents the 

intercept and β is the matrix of coefficient estimates for predictor variables, X.  

Similar to Study One, a confidence level of 99.9% (or α = .001) was adopted for 

determining statistical significance. The odds ratios are more complex in a multinomial model 

than they are in an ordinal logit model given that each covariate is assigned a different 

coefficient (βi) in the model equations (eqns 4, 5, and 6). In an ordinal logit model, the effect of 

a covariate on the response variable (e.g., injury severity) is assumed to be independent of the 

categories. That is, the odds are assumed constant for all categories. For example, a covariate 

either increases injury severity or decreases it. A multinomial model would suggest that a 

covariate can increase the likelihood of a mid-level injury while decreasing the likelihood of a 

fatal injury.    

In the results section, three odds ratios will be reported for each covariate as follows: 

Controlling for all other covariates,   

1) the odds of a singular crash over a rear-end crash given covariate level A (e.g., 

alcohol involved) divided by the same odds given covariate level B (e.g., no alcohol 
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involved). Odds here are calculated as the probability of a singular crash divided by 

the probability of a rear-end crash. Thus, 

ሺ1ሻ݋݅ݐܴܽ ݏܱ݀݀ ൌ

Pሺa singular crash|alcoholሻ
Pሺa rear െ end crash|alcoholሻ
Pሺa singular crash|no alcoholሻ
Pሺa rear െ end crash|no alcoholሻ

 

2) the odds of an angular-striking crash over a rear-end crash given covariate level A 

(e.g., alcohol involved) divided by the same odds given covariate level B (e.g., no 

alcohol involved).  Odds here are calculated as the probability of an angular-striking 

crash divided by the probability of a rear-end crash. 

ሺ2ሻ݋݅ݐܴܽ ݏܱ݀݀ ൌ

Pሺan angular െ striking crash|alcoholሻ
Pሺa rear െ end crash|alcoholሻ

Pሺan angular െ striking crash|no alcoholሻ
Pሺa rear െ end crash|no alcoholሻ

 

3) the odds of an angular-struck crash over a rear-end crash given covariate level A 

(e.g., alcohol involved) divided by the same odds given covariate level B (e.g., no 

alcohol involved).  Odds here are calculated as the probability of an angular-struck 

crash divided by the probability a rear-end crash. 

ሺ3ሻ݋݅ݐܴܽ ݏܱ݀݀ ൌ

Pሺan angular െ struck crash|alcoholሻ
Pሺa rear െ end crash|alcoholሻ

Pሺan angular െ struck crash|no alcoholሻ
Pሺa rear െ end crash|no alcoholሻ

 

 

Therefore, an odds ratio (3) greater than 1 would suggest that the odds of observing an 

angular-struck crash over a rear-end crash when alcohol is involved is higher than that when 

alcohol is not involved. It should be noted that an odds ratio greater than 1 here does not 

necessarily mean that alcohol increases the probability (or likelihood) of singular crashes.  
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4.4 Model Results 

Table 5: Crash type results: model coefficient estimates and p-values 

 Eqn. 4 
singular vs.  

rear-end 

Eqn. 5 
angular-striking vs. 

rear-end 

Eqn. 6 
angular-struck vs. 

rear-end 
Variable Estimate p-value Estimate p-value Estimate p-value
  Constant -1.081 <.0001 0.989 <.0001 0.957 <.0001
  Rural 0.397 <.0001 0.017 n.s.; .58 -0.025 n.s.; .43
  Highway 0.187 .0001 -1.275 <.0001 -1.573 <.0001
  Non daylight 1.016 <.0001 0.346 <.0001 0.295 <.0001
  Bad weather 0.682 <.0001 0.227 <.0001 0.172 <.0001
  Speeding 0.120 .0007 -1.914 <.0001 -3.019 <.0001
  Alcohol 0.831 <.0001 -0.275  .0001 -0.274 .0002
  Female 0.121 .0002 0.097 .0004 0.154 <.0001
  Intersection -0.747 <.0001 -0.174 n.s.; .01 -0.251 .0007
  Curvy road 1.854 <.0001 -0.244 <.0001 -0.242 <.0001
Inattention     
  Young -1.279 <.0001 -1.114 <.0001 -0.919 <.0001
  Mid-age -1.455 <.0001 -1.027 <.0001 -1.017 <.0001
Drowsiness   
  Young 1.869 <.0001 -2.175 <.0001 -2.788 <.0001
  Mid-age 1.043 <.0001 -2.057 <.0001 -2.681 <.0001
Passenger-related distraction    
  Young 0.344 n.s.; .13 -1.803 <.0001 -2.162 <.0001
  Mid-age -0.236 n.s.; .20 -2.092 <.0001 -3.109 <.0001
In-vehicle distraction  
  Young 0.202 n.s.; .08 -2.059 <.0001 -3.027 <.0001
  Mid-age 0.147 n.s.; .89 -2.294 <.0001 -3.692 <.0001
Talking on a cell phone  
  Young -0.576 n.s.; .03 -1.181 <.0001 -1.830 <.0001
  Mid-age 0.052 n.s.; .83 -1.489 <.0001 -1.376 <.0001
Texting/dialling on a cell phone  
  Young -0.356 n.s.; .43 -4.204 .0007 -2.117 <.0001
  Mid-age -0.127 n.s.; .77 -1.428 n.s.; .002 -3.584 n.s.; .002
External distraction  
  Young -1.679 <.0001 -2.713 <.0001 -3.679 <.0001
  Mid-age -1.936 <.0001 -2.759 <.0001 -3.027 <.0001
* n.s. stands for not significant at α=.001 level 

 

The model coefficients and corresponding p-values are presented in Table 5. The model 

includes rear-end, singular, angular-striking, and angular-struck crashes as four possible 



44 

 

realizations of the response variable. It should be noted that various coefficient estimates 

associated with old drivers were found to be nonsignificant in the model. This trend was likely 

due to the very few number of observations within corresponding categories. Thus, old driver 

data were not included in the final model.  

 

Table 6: Frequencies of actual and predicted model outcomes 

 Predicted
Actual Rear-end Singular Angular-striking Angular-struck Row Total 

Rear-end 438,910 112,293 128,905 270,105 950,213
Singular 377,826 939,935 186,462 261,991 1,766,213

Angular-striking 229,524 126,848 443,539 980,770 1,780,681
Angular-struck 188,862 104,589 420,586 1,017,086 1,731,123 

 

 

Table 6 presents the confusion matrix specifying the frequencies of actual and predicted 

outcomes. Forty-six percent of the rear-end crashes (438,910 / 950,213), 53% of the singular 

crashes, 25% of angular-striking, and 59% of the angular stuck crashes were correctly predicted. 

The lower accuracy rate for angular-striking crashes may be due to the model controlling for a 

number of environmental variables that were identical for striking and struck vehicles involved 

in the same angular crash. Since the majority of the confusion is between angular striking and 

struck crashes, building two different models separating these crash types may increase the 

accuracy rates (e.g., first model with three outcomes: rear-end, singular, and angular-striking; 

second model with three outcomes: rear-end, singular, and angular struck).  

Table 7 reports the odds ratio calculated based on the model coefficients. It indicates that 

driving in rural settings (as opposed to urban) increases the odds of a singular crash by 49% 

compared to rear-ending another vehicle (OR = 1.49). Thus, driving in rural settings shifts crash 

types towards singular crashes, while no significant effects are found for angular crashes when 
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they are compared to rear-end crashes. Female drivers (as opposed to male drivers) have 

increased odds of being involved in singular (OR=1.13) and angular crashes (OR=1.10 for 

striking, OR=1.17 for struck) compared to rear-end crashes. 

 

Table 7: Crash type results for driver age and distraction 

 Eqn. 4 
singular vs.  

rear-end

Eqn. 5 
angular-striking vs. 

rear-end

Eqn. 6 
angular-struck vs. 

rear-end
Comparisons OR 95% CI OR 95% CI  OR 95% CI
Rural vs. urban 1.49 1.44 – 1.54 n.s.*;

1.02 
0.99 – 1.05 n.s.*; 

0.97 
0.94 – 1.01 

Highway vs. non-highway 1.21 1.15 – 1.27 0.28 0.26 – 0.30 0.21 0.19 – 0.22 
Non-daylight vs. daylight 2.76 2.66 – 2.86 1.41 1.37 – 1.46 1.34 1.30 – 1.39 
Bad vs. normal weather 1.98 1.90 – 2.06 1.25 1.21 – 1.30 1.19 1.14 – 1.24 
Speeding vs. non-speeding 1.13 1.09 – 1.17 0.15 0.14 – 0.15 0.05 0.05 – 0.05 
Alcohol vs. non-alcohol 2.30 2.15 – 2.45 0.76 0.71 – 0.82 0.76 0.71 – 0.82 
Female vs. male 1.13 1.09 – 1.17 1.10 1.07 – 1.13 1.17 1.13 – 1.20 
Intersection vs. non-
intersection 

0.47 0.44 – 0.51 0.84 0.79 – 0.90 0.78 0.72 – 0.84 

Curvy vs. straight road 6.38 6.10 – 6.68 0.78 0.74 – 0.83 0.79 0.74 – 0.83 
       
Distracted young vs. non-distracted young  
  Inattention 0.28 0.26 – 0.30 0.33 0.31 – 0.35 0.40 0.38 – 0.42 
  Drowsiness 6.48 5.65 – 7.43 0.11 0.09 – 0.15 0.06 0.04 – 0.09 
  Passenger-related 1.41 1.12 – 1.77 0.17 0.12 – 0.22 0.12 0.08 – 0.16 
  In-vehicle 1.22 1.09 – 1.37 0.13 0.11 – 0.15 0.05 0.04 – 0.06 
  Talking on a cell phone 0.56 0.43 – 0.74 0.31 0.24 – 0.39 0.16 0.12 – 0.22 
  Texting/dialling on a cell 
phone 

n.s.*; 
0.70 

0.45 – 1.09 0.02 0.00 – 0.05 0.12 0.07 – 0.20 

  External distraction 0.19 0.16 – 0.22 0.07 0.05 – 0.08 0.03 0.02 – 0.03 
 
Distracted mid-age vs. non-distracted mid-age

 

  Inattention 0.23 0.22 – 0.25 0.36 0.34 – 0.37 0.36 0.35 – 0.38 
  Drowsiness 2.84 2.57 – 3.13 0.13 0.11 – 0.15 0.07 0.05 – 0.09 
  Passenger-related n.s.; 

0.79 
0.66 – 0.95 0.12 0.10 – 0.15 0.05 0.03 – 0.06 

  In-vehicle n.s.; 
1.01 

0.91 – 1.13 0.10 0.09 – 0.12 0.03 0.02 – 0.03 

  Talking on a cell phone n.s.; 
1.05 

0.83 – 1.34 0.23 0.17 – 0.30 0.25 0.19 – 0.33 

  Texting/dialling on a cell 
phone 

n.s.; 
0.88 

0.57 – 1.37 0.24 0.15 – 0.38 0.03 0.01 – 0.09 

  External distraction 0.14 0.12 – 0.17 0.06 0.05 – 0.07 0.05 0.04 – 0.06 
* n.s. stands for not significant at α=.001 level 
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Non daylight (as opposed to daylight) increases the odds of having a singular crash by 

almost 3-fold compared to a rear-end crash (OR=2.76). Under this condition, the odds of 

angular crashes over rear-end crashes are also increased (OR=1.41 for striking, OR=1.34 for 

struck). Bad weather has similar effects as non daylight: the odd ratios for singular, angular-

striking, and angular-struck crashes over rear-end crashes are 1.98, 1.25, and 1.19, respectively. 

At an intersection (as opposed to non-intersection), the odds of rear-end crashes increase 

compared to singular (OR=1/0.47 =2.11) and angular crashes (OR=1/0.84=1.19 for striking, 

OR=1/0.78=1.29 for struck).  

Driving on the highway, speeding, alcohol, and driving on curvy roads have similar 

effects on crash types. In particular, they all increase the odds of singular crashes over rear-end 

crashes (OR=1.21; 1.13; 2.30; 6.39, respectively). On the other hand, the odds of striking 

another vehicle or being struck in an angular crash are less over rear-ending another vehicle 

(OR=0.28 and 0.21 for highway; 0.15 and 0.05 for speeding; 0.76 and 0.76 for alcohol; 0.78 and 

0.79 for curvy roads). In general, our findings on these variables which were controlled for in 

our model are in line with previous studies (Ghazizadeh & Boyle, 2009; Neyens & Boyle, 

2007). Due to the complexity of the age distraction interaction, the following model results will 

be interpreted through visualization of different crash rates. 
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Inattention: 

 

Figure 3: Rate of different crash types observed for inattentive young and mid-age drivers 

 

As illustrated by Figure 3, inattention impacted young and mid-age drivers in a similar 

way. Two apparent changes are the decrease in the rate of singular crashes and an increase in the 

rate of rear-end crashes. The singular crash rates are reduced by more than half, while the rear-

end crash rates are almost doubled for both age groups. These effects are significant as reported 

in Table 5 and Table 6.  Neyens and Boyle (2007) found the same effect for teenager drivers. 
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Drowsiness: 

 

Figure 4: Rate of different crash types observed for drowsy young and mid-age drivers 

 

Drowsy driving increases the rate of singular crashes dramatically (compared to rear-end 

crashes: OR=6.48 for young drivers, OR=2.84 for mid-age drivers), reducing the rate of rear-

end and angular crashes. Previous literature also suggests that the majority of drowsy-driving 

crashes are singular run-off the road crashes (Pack, et al., 1995).  

 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

Singular

Rear-end

Angular 
(striking)

Angular 
(struck)

Drowsiness, young
Drowsiness, mid-age
No distraction, young
No distraction, mid-age



49 

 

Passenger-related distraction: 

 

Figure 5: Rate of different crash types observed for young and mid-age drivers distracted 

by passengers 

 

Passenger-related distractions appear to increase the rate of singular and rear-end 

crashes. However, there seems to be an age-distraction interaction. Specifically, the increase in 

the rate of singular crashes is larger for young drivers, whereas the increase in the rate of rear-

end crashes is larger for mid-age drivers.  Our observed effects for young and mid-age drivers 

contradict the results of Ghazizadeh and Boyle (2009).  Specifically, they indicated that angular 

crash rates significantly increase with passenger-related distractions; whereas we found the 
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reverse trend.  The mismatch in findings might be due to the additional covariates used in  

Ghazizadeh and Boyle (2009). 

 

In-vehicle distraction: 

 

Figure 6: Rate of different crash types observed for young and mid-age drivers distracted 

by in-vehicle sources 

 

Similar to passenger-related distractions, in-vehicle distractions appear to increase the 

rate of singular and rear-end crashes for both age groups. There also appears to be a distraction-

age interaction, with rear-end crash rates increasing more for mid-age drivers and singular crash 
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rates increasing more for young drivers. The results observed here are in-line with Neyens and 

Boyle (2007) and Ghazizadeh and Boyle (2009).  

 

Talking on a cell phone: 

 

Figure 7: Rate of different crash types observed for young and mid-age drivers who were 

talking on a cell phone 

 

Talking on a cell phone is associated with increased rates of rear-end crashes for both 

age groups. Mid-age drivers also have an increased rate of singular crashes, and a decreased rate 

of angular-striking crashes, whereas these trends are not apparent for young drivers.  
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Texting/dialling on a cell phone: 

 

Figure 8: Rate of different crash types observed for young and mid-age drivers who were 

texting/dialling on a cell phone 

 

Compared to talking on a cell phone, texting/dialling on a cell phone exhibited different 

effects for young drivers. While we did not observe significant changes in singular and angular-

striking crash rates for young drivers who were talking on a cell phone, we found that when 

young drivers are texting/dialling on a cell phone, singular crash rates increase and angular-

striking crash rates decrease.  
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External distraction: 

 

Figure 9: Rate of different crash types observed for young and mid-age drivers distracted 

by an external source 

 

External distractions appear to have the same effects for young and mid-age drivers, with 

a dramatic increase in rear-end crash rates (see the extremely low odds ratios in the external 

distraction row for both age groups). There have been no other studies which compared external 

distractions to other distraction types.  In general, all distraction types except drowsiness are 

associated with an increase in rear-end crash rates. The largest increase is observed for external 

distractions. Many of the distraction types also appear to increase singular crash rates, with the 

exception of inattention (a reduction is observed), passenger-related distractions (no major 
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changes observed for mid-age drivers), talking on a cell phone (no major changes observed for 

young drivers), and external distractions (a reduction is observed). In general, angular crash 

rates appear to decrease for all distraction types with the exception of inattention (no major 

changes observed for young drivers). 
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Chapter 5  

Discussion 
tyles 1-9 for thesis body: Heading 1 » 

5.1 Distractions and Their Effects on Crash Outcomes 

5.1.1 Passenger-Related Distractions and Talking on a Cell Phone 

Passenger-related distractions have been widely examined. In crash report studies, the 

presence of passengers in a crash has been shown to increase the likelihood of more severe 

injuries, not only for passengers themselves but also for the drivers (Kockelman & Kweon, 

2002; Neyens & Boyle, 2008). Doherty et al. (1998) examined the role of passengers in police-

reported crashes from 1988, comprising of 306,000 drivers aged between 16 and 59 years old. 

Their descriptive statistical analysis revealed that when young drivers were carrying passengers, 

they had a higher crash rate than when they were driving alone. Another study by Rice et al. 

(2003) also confirmed this finding. However, a problem with passenger distraction research is 

that they either did not distinguish age or emphasize young and teenage drivers. Older drivers 

are also a high-risk group and attention should also be given to this group. The results of Study 

One indicate that passengers increase the likelihood of more severe injuries, however this effect 

is smallest for young drivers. There is a more dramatic effect of passengers on the resulting 

severities of crashes involving mid-age and/or older drivers.   

In a statistical study on occupant injuries, where injury data were collected from hospital 

attendance records and cell phone usage data were collected from phone records, talking on cell 

phones was found to be associated with an increase in more severe injuries (McEvoy et al., 

2005). Study One results also suggest that when a mid-age or an old driver is talking on a cell 

phone, people involved in the crash have higher odds of sustaining severe injuries, while  the 
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opposite effect was found for young drivers. Although it may appear that  Study One’s result on 

young drivers contradicts the results of Neyens and Boyle (2008), who found that cell-phone 

related distractions significantly increase injury severities in teenage driver crashes,  the 

demographic they used (teenagers as opposed to young drivers) and their operationalization of  

cell-phone related distractions (talking and dialling/texting on cell phones were grouped 

together) are different than those used in this thesis.   

These two types of distractions, conversing with a passenger and on a cell phone, share 

some common traits – e.g., both involve talking with another person. However, there are still 

some differences. For example, a hand-held cell phone may induce a manual distraction (hand 

off the steering wheel) and a passenger may induce a visual distraction (looking towards the 

passenger). Study Two’s results indicate that passenger-related distractions and talking on a cell 

phone increases the odds of rear-end crashes for young and mid-age drivers. Moreover, this 

effect appears to be larger for passenger-related distractions than for talking on a cell phone. As 

presented in Chapter Two, existing literature, although relatively limited, indicates that 

conversing on the phone and with a passenger have comparable effects on driving behaviour and 

performance (e.g., Laberge et al. (2004), Nunes and Recarte (2002)). There is some evidence 

that talking on a cell phone may induce compensatory behaviours that are larger in magnitude. 

For example, a simulator study revealed that subjects maintain greater following distances when 

they are talking on a cell phone than they do when conversing with a passenger (Amado & 

Ulupinar, 2005). Further, research shows that more drivers  report that they do feel the need to 

slow down or maintain larger following distances when they are talking on their cell phones 

compared to when they are distracted by passengers (Baker & Spina, 2007).  Greater following 

distances and reduced speeds with cell phone conversations may translate to a dampened effect 

on the increase in rear-end crashes, potentially explaining the findings of Study Two.  
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Moreover, in Study One and Study Two, the crash outcomes of these two distractions 

appear to have interaction effects with age. Specifically, young drivers’ singular crash rates 

increases dramatically with passenger-related distractions, while mid-age drivers appear to have 

a milder increase in singular crash rates. On the other hand, mid-age drivers’ singular crash rates 

appear to increase when they are talking on cell phones, while young drivers appear to have 

decreased singular crash rates. These observations provide motivations to study different age 

groups’ driving performance in the presence of different distractions. Although such research is 

extensively conducted for young drivers, older drivers need no less attention.  

5.1.2 In-Vehicle Distractions and Dialling/Texting on a Cell Phone 

Performing in-vehicle distracting tasks, such as adjusting on-board entertainment and 

A/C systems, eating, drinking, and smoking, often requires a hand off the wheel or eyes off the 

road. The results of Study One indicate in-vehicle distractions are associated with an increase in 

injury severities. This effect strengthens as age grows. Study Two’s results suggest that driver 

distracted by in-vehicle sources run into proportionately more singular and rear-end crashes. 

Both Ghazizadeh and Boyle (2009) and Neyens and Boyle (2007)’s results are in accordance 

with this result. In addition, this effect is larger for mid-age drivers with a more dramatic 

increase of rear-end crash rates for this age group.  

Results from Study One indicate that older drivers are affected the most from in-vehicle 

distractions with regards to occupant injury severities and   rear-end crash involvement. On the 

other hand, older drivers seem to be less likely to engage in such activities, as evidenced by 

Table 1.  

The combination of these trends implies a need to design mitigation strategies to help 

older drivers better handle in-vehicle distractions rather than discouraging them from engaging 
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in these activities, for they already seem to restrain themselves, i.e., both mid-age and older 

drivers appear to have smaller involvement rates in in-vehicle distraction than young drivers do 

(Table 1). On the other hand, the results indicate that young drivers are affected by in-vehicle 

distractions on a much smaller magnitude compared to other age groups.  Possible explanations 

could be that young drivers are able to handle such distractions better, or they perform relatively 

simpler tasks than older drivers. Further experiments are needed to assess if young drivers’ 

performance degradation is less compared to older drivers, when performing in-vehicle 

distracting tasks. 

Effects of dialling/texting on a cell phone were expected to be similar to that of in-

vehicle distractions. Such an expectation was generally true for rear-end crashes. However, 

there was also an age interaction effect for in-vehicle distractions which was not observed for 

dialling/texting on a cell phone, with in-vehicle distractions affecting mid-age drivers more than 

young drivers in terms of rear-end crash rates.  Further, for dialling/texting on a cell phone 

younger driver crashes had higher odds of a severe outcome than mid-age driver crashes, 

whereas for in-vehicle distraction mid-age driver crashes had the higher odds. A possible reason 

is that younger drivers may be exposed to text messaging longer than mid-age drivers.   

Although there is no literature supporting this view, it is feasible to investigate detailed texting 

records with the cooperation of telecommunication companies. 

5.1.3 External Distractions 

The results suggest that drivers who were distracted by external objects tend to be 

involved more in rear-end crashes. This effect is consistent across the age groups investigated 

(i.e., young and mid-age). External distractions induce less effective visual scanning patterns 

(Beijer, Smiley, & Eizenman, 2007) and the higher odds of rear-end crashes might be due to the 
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direction of visual attention away from the lead vehicles leading to a degradation in response 

times and the maintenance of safe following distances (Neyens & Boyle, 2007).  

After controlling for the effects of crash types, external distraction appears to decrease 

injury severities for young and old driver crashes; whereas no effect was observed for mid-age 

driver crashes. As shown in Figure 1, external distraction effects on injury severities are in the 

opposite direction compared to distraction sources inside of the vehicle, e.g., passenger, cell 

phone, and in-vehicle devices.  Drivers who are distracted by external objects outside of the 

vehicle can still pick up roadway information on their periphery as opposed to drivers who are 

visually distracted by in-vehicle sources. However, it is surprising to see that conversing with 

passengers or on a call phone was more detrimental than external distractions. There are various 

potential explanations for this observed effect. Conversations may be more taxing on drivers’ 

information processing channels by consuming working memory and prolonging drivers’ TTC 

judgment. It is also possible that drivers may be exhibiting compensatory behaviours (e.g., 

reduced speeds) while looking at external objects. Further research is needed in this area to 

identify the underlying reasons.  

5.1.4 Inattention 

This study revealed that occupants of a crash which involves an inattentive driver often 

have less severe injuries; and inattentive drivers are most likely to be involved in rear-end 

crashes. Further, it is shown in Study One that rear-end crashes are often less severe. It should 

be noted that even after controlling for this effect, inattention still results in less severe injuries. 

This trend has also been reported in other studies. Liu and Donmez (2011) found that both 

police and civilian drivers, who were inattentive, were involved in less severe crashes. Neyens 

and Boyle (2008) confirmed this result for teenage drivers.  These findings are somewhat 
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counter-intuitive, because laboratory experiments suggest that inattention degrades visual 

scanning performance with decreased useful-field-of-views, longer eye fixations, and less 

frequent saccades (Harbluk, Noy, Trbovich, & Eizenman, 2007; Recarte & Nunes, 2000). 

However, previous research shows that cognitive workload results in reduced speeds, which 

might be one compensatory behaviour impacting crash severities (Lavalliere, et al., 2011).  

Apart from potentially lowered speeds of inattentive drivers, their performance could also be 

compensated by shorter TTC judgments.  

It should be noted that it is quite hard to induce or manipulate inattention in a controlled 

manner. For example, in Harbluk et al. (2007), participants were required to perform arithmetic 

calculations, which likely is not representative of , for example, being “lost in thought”. Further 

research is required to understand the nature and effects of inattention as defined in crash 

reports.  

5.1.5 Drowsiness 

Although drowsiness does not involve secondary activities, it is also a significant human 

factor which impairs driving capability (Eoh, Chung, & Kim, 2005) and results in a progressive 

withdrawal of attention from the roadway. After controlling for crash type and other variables, 

Study One indicates that drowsiness increases the odds of severe injuries. Results show that 

drowsiness is detrimental for drivers in all age groups, but young and mid-age drivers seem to 

handle it better than old drivers. The results of Study Two suggest that drowsiness is associated 

with very high singular crash rates. Otmani et al. (2005) conducted a driving simulator study 

and confirmed that driving alone on the road is highly monotonous and drivers feel bored and 

tired. Low traffic might also contribute directly to the occurrence of a singular crash, as the 

chance of hitting another vehicle decreases when traffic is low.   Overall, compared to other 
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distraction types, drowsiness has more dramatic effects on crash injury severities. Although it 

appears that the attention of the research community has recently shifted towards technology 

induced distractions, drowsiness still remains to be a large problem requiring novel mitigation 

solutions.  

5.2 Research Method Limitations 

Study One and Study Two are subject to a number of limitations. The variables utilized 

in these statistical models did not go through a robust selection process. These variables were 

selected based on previous studies, in which robust parameter selection processes were absent as 

well (Ghazizadeh & Boyle, 2009; Kockelman & Kweon, 2002; Liu & Donmez, 2011; McEvoy, 

2007; Neyens & Boyle, 2007, 2008). A simple but ideal backward selection process should 

begin with all possible variables in the model, which may affect the dependent variable. 

However, this method cannot be effectively implemented in this particular study, given that the 

large amount of data results in statistically significant covariates, including those apparently 

correlated pairs. As a result, ad-hoc models were built to include variables that are considered to 

play a role in motor vehicle crashes based on current state-of-knowledge and the wide-spread 

consistency among previous crash data analysis.  Still, we cannot say that there are no redundant 

or missing variables in these models.  

A limitation of the models built in this thesis is the inability to identify the at-fault 

driver. Constrained by the limited amount of information that GES provides, i.e., at-fault drivers 

not identified, we are only able to assess the associations between distractions and crash 

outcomes. In order to move a step further to assess crash causations, the “at-fault driver” 

information is needed. 
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A general limitation with the use of crash databases is that these data are based on police 

reports and may present a biased sample (Gordon, 2009). For example, driver distraction might 

be underreported, especially if there are fatalities. Such a bias might have impacted the results of 

this thesis, likely generating more conservative estimates for the effects of distractions. This 

underreporting issue had been acknowledged previously, and several states are making efforts to 

collect better data on driver distraction (Sundeen, Accessed July 31, 2010).  

It is, in general, difficult to study the effects of aging. While many factors (such as 

distraction and traffic complexity) can be manipulated in controlled settings, a person’s 

chronological age cannot be manipulated. Inherent in the cross-sectional nature of this study is 

the fact that there are confounds in comparing the abilities of different age groups. For example, 

older drivers in general have more experience. Since longitudinal studies of age and driving are 

expensive and time-consuming, the differences observed in cross-sectional studies cannot be 

attributed to a specific factor such as degradation in cognitive abilities  (Mather, 2007).  

The quality of GES data is also a concern. For example, although GES includes a 

category of “talking to a passenger”, data reported at the state level for some states (e.g., 

Missouri) do not include this information. On the other hand, the only geographic information 

reported in GES is the “region of a crash”, i.e., mid-west, northeast, etc. This specification made 

it impossible for us to verify the quality of the data. However, at the national level, GES is 

regarded to be the best data source available. Fatality Analysis Reporting System (FARS) only 

includes fatal crashes, and Crashworthiness Data System (CDS) has an emphasis on severe 

crashes with detailed information on towed vehicles, overlooking minor crashes. 
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Chapter 6  

Conclusions 
ading styles 1-9 for thesis body: Heading 1 » 

6.1 Contributions to the Field 

This thesis provides an exploratory study rather than an investigative one. The main 

contribution of this thesis is the identification of associations between different distraction types, 

age groups, and crash outcomes. Underlying reasons for the findings cannot be assessed. 

However, the findings provide the big picture and highlight areas that need further research and 

should be prioritized for policy making.  For example, dialling/texting on cell phones should be 

tightly controlled since this distraction type is associated with the highest odds of severe 

injuries. This result provides additional support for banning of the use of hand-held phones. 

The results of this thesis showed that drowsiness drastically increases the odds of severe 

injuries; this effect is most pronounced when the drowsy driver is mid-age or old. Further, 

drowsiness increases the odds of singular crashes. Previous research shows that singular crashes 

have higher odds of occurrence on low-traffic rural roads (Otmani, et al., 2005) and Study One 

revealed that crashes on rural roads are more severe. Thus, it is necessary to implement 

mitigation strategies that can keep drivers free from drowsiness. Attention should be given to 

rural driving and all age groups; although mid-age and old drivers appear to require even further 

attention. Potential strategies should be making the driving experience less monotonous and thus 

keep the drivers alert but without distracting them.  

On the other hand, rear-end crash odds was shown to increase with urban driving . 

Moreover, external distractions, which might be more likely in an urban setting (e.g., billboard 

signs, more elements in the scenery), were also shown to increase the odds of rear-end crashes. 
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Appropriate measures can be taken to minimize externally distracting stimuli or the drivers can 

be provided with headway information or rear-end collision warning systems adaptive based on 

eye tracking.   

As presented in Table 1, inattention accounts for 71% of driver distractions associated 

with a crash. Although inattention constitutes a large proportion in GES, it is not necessary to 

combat this problem from the crash injury severity perspective as inattentive drivers were often 

found to be in less severe crashes. Nevertheless, inattention still appears to be a significant issue 

based on the sheer number of crashes involving inattention. However, it is hard to assess 

inattention even in controlled settings (e.g., by detecting a reduced horizontal visual scanning 

pattern), which makes the quality of inattention reporting in crash records highly questionable. 

Naturalistic studies, such as Strategic Highway Research Program 2 (SHRP2 - currently 

underway), will provide further insights into the magnitude of this issue. Although there is 

plenty of research on passenger distractions, the majority of research efforts are on younger 

drivers. This thesis revealed that passenger distractions are more detrimental to older drivers as 

evidenced by the increase in odds of severe injuries. Thus, future research should also consider 

this group of drivers.  

6.2 Future Research 

To better understand the underlying reasons for different crash types, there is a need to 

identify the relations between driving performance, behaviour, and crash outcomes. Almost all 

performance and behaviour research is conducted in controlled settings, thus little is known 

about why certain types of outcomes are observed for different distraction types and age groups. 

For example, although close following distances have been suggested to increase the likelihood 

of rear-end crashes, there has not been any studies explicitly proving this hypothesis. The effect 
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size on following distances for different types of distractions is also not clear. Following 

distances adopted under different types of distractions combined with response time 

degradations would have a joint effect on the likelihood of rear-end crashes as well as crash 

injury severities. This thesis tried to identify links between crash data analysis and controlled 

experiments on behaviour and performance. However, the many holes in the current state of 

knowledge in driving research made it impossible for the author to make concrete connections. 

Hence the discussions on potential causal factors were speculative at best. Current and future 

naturalistic studies, such as SHRP2, should create more explicit ties between performance, 

behaviour, and crash outcomes. 

Another fundamental question to ask is: what are the tasks that drivers perform when 

they drive? Controlled studies impose the level of task demands raising concern about whether 

their results are representative of real-world driving, hence crash outcomes observed in the real 

world. The types of tasks that the drivers perform when they drive also have implications for 

distraction mitigation design. According to the Multiple Resource Theory (Wickens, 2008), 

some tasks are easier to perform concurrently (e.g., driving and listening to the radio). How the 

driver modulates their distracting activities during driving is not well understood and should be 

studied.  

A general limitation of police reported crashes is that the crash reports only capture a 

fraction of the total exposure of distractions (see Figure 10). For example, if the drivers never 

run into a crash when they are distracted or they do not disclose their distracting activities in a 

crash report (or if they die during the crash), their status with regards to distraction will not be 

reported. An earlier study in Toronto dealt with this issue by collecting detailed cell phone usage 

data for property damage only crashes (Redelmeier & Tibshirani, 1997). This study collected 

crash reports for 14 months and checked the corresponding phone records during pre-crash 
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moments. Such a semi-naturalistic data collection process is lengthy and costly. Thus, accession 

of cell phone records is rarely seen, although it should be the preferred way.  Further, we still do 

not have a reliable way to get information for other distraction types at pre-crash moments (e.g., 

inattention) that do not involve the use of technology by the driver which creates an accessible 

record. 

 

Figure 10: Documented and un-documented driver distractions (from Stutts et al. 2005 B) 
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