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Abstract— This paper explores the influence of high cognitive 

load on driver’s Electroencephalography (EEG) signals collected 
from two channels (Fp1, Fp2) through a wireless consumer-grade 
system. Although EEG has been used in driving research to assess 
cognitive load, only a few studies focused on high load and they 
used research-grade systems. Recent advancements allow for less 
intrusive and more affordable systems. As an exploration, we 
tested the feasibility of one such system to differentiate three levels 
of cognitive taskload in a simulator study. Thirty-seven 
participants completed a baseline drive with no secondary task 
and two drives with a modified version of the n-back task (1-back, 
2-back). The modification removed the verbal response required 
during task presentation to prevent EEG signal degradation, with 
the 2-back expected to impose higher load than 1-back. Another 
objective of this study was to validate that this modified task 
increased cognitive load in the expected manner. The modified 
task led to significant trends from baseline to 1-back, and from 
1-back to 2-back in heart rate, galvanic skin response, respiration, 
variability in horizontal gaze position, and pupil diameter, all in 
line with previous driving studies on cognitive load. Further, the 
EEG system was sensitive to the modified task, with the power of 
alpha band decreasing significantly with increasing n-back levels 
(baseline vs. 1-back: 0.092 Bels on Fp1, 0.179 on Fp2; 1-back vs. 
2-back: 0.209 on Fp1, 0.147 on Fp2). Thus, a consumer-grade 
EEG system has the potential to capture high levels of cognitive 
load experienced by drivers. 
 

Index Terms—Driver assistance systems, Driving performance, 
N-back task, Physiological measures, Electroencephalography 
 

I. INTRODUCTION 
RIVING can be mentally demanding, especially under 
certain circumstances such as bad weather and complex 

traffic conditions. Activities secondary to driving, e.g., the use 
of in-vehicle infotainment systems and smart phones, can also 
claim cognitive resources. Although visual-manual secondary 
tasks are especially detrimental to safety [1], tasks that are 
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auditory-verbal are also of concern as they are becoming more 
common with the rise of voice-command interfaces within the 
vehicle. Therefore, there is a need to also study the effects of 
auditory-verbal secondary tasks on drivers’ cognitive load, a 
multidimensional construct representing the load that 
performing a particular task imposes on the drivers’ cognitive 
system [2]. What the driver experiences, i.e., cognitive load, 
depends on taskload (based solely on task characteristics) as 
well as the individual driver characteristics and the cognitive 
capacity that the driver allocates to different tasks [2]. Several 
simulator and on-road studies indicate that auditory-verbal 
secondary tasks impair drivers’ visual scanning behaviors and 
driving performance [3, 4]. Although drivers can moderate 
their cognitive load to some extent, such as by reducing their 
speed, avoiding lane changes, and increasing their headway [5, 
6], these actions may not be sufficient to fully compensate for 
the external demands experienced by the drivers. In-vehicle 
information systems and advanced driver assistance systems 
can help drivers to better modulate their cognitive load through 
real-time assessment of cognitive load, e.g., [7], and through 
ensuing interventions, e.g., locking drivers out from cell phone 
use when they are detected to be overloaded.  

Various measures have been used to estimate cognitive load 
experienced by drivers. These measures can be categorized into 
four groups: a) physiological, such as Electroencephalogram 
(EEG), Electrocardiography (ECG), galvanic skin response 
(GSR), and respiration; b) eye tracking, such as blink rate and 
gaze position; c) performance-based, such as vehicle speed; and 
d) subjective, such as NASA Task Load Index (NASA-TLX). 
Table 1 provides a summary of example cognitive load 
measures and their response to increased external cognitive 
taskload, with results from driving studies cited when available.  

It is widely agreed that no single measure alone can provide 
sufficient information to estimate cognitive load [8, 9], and 
each measure has its pros and cons. For example, subjective 
measures indicate how the driver feels but do not provide a 
continuous assessment of load [10]. Driving performance 
measures are much less intrusive but also less sensitive to low 
load levels [10]. Eye-tracking captures cognitive load through a 
reduction in standard deviation (SD) of gaze position [11], but 
its accuracy is easily influenced by ambient light, which is 
difficult to control on the road. Physiological measures can 
provide a continuous assessment of cognitive load, but some 

High Cognitive Load Assessment in Drivers 
through Wireless Electroencephalography and 

the Validation of a Modified N-Back Task 
Dengbo He, Birsen Donmez, Senior Member, IEEE, Cheng Chen Liu, and Konstantinos Plataniotis, 

Fellow, IEEE 

D 



THMS-18-01-0038.R3 
 

 

2 

require long sampling windows. For example, a reliable 
estimation of Heart Rate (HR) variability requires at least 2-5 
minutes of data collection [12], and the respiration rate of a 
healthy individual is only around 12 times per minute [13].  

Among physiological measures, EEG seems to be a good 
candidate for detecting drivers’ cognitive load given that it 
requires a small sampling window, e.g., 5 seconds in [8]. EEG 
records the electrical activity in the brain through electrodes 
placed on the surface of the scalp [14] and is more appropriate 
for driver load assessment compared to other neuroimaging 
methods. For example, Functional Magnetic Resonance 
Imaging (fMRI) machines are too big and both fMRI and 
Functional Near-Infrared Spectroscopy (fNIRS) responses are 
sluggish in time [15]. However, research-grade EEG systems, 
e.g., with 32 electrodes used in [16, 17], are still too intrusive 
for in-vehicle applications.  
 

TABLE I 
EXAMPLE COGNITIVE LOAD MEASUREMENTS 

 
Measure Trend with Increased Cognitive Taskload 
Physiological  

 

EEG Power of alpha band ↓ [8, 14] 
P300 latency ↑ [17] 

ECG HR ↑ [9, 11, 18] 
HR variability ↓ [18] 

GSR ↑ [9, 11] 
Respiration Rate ↑ [9] 

Eye Tracking  

 

Gaze position Periphery/mirror/instrument check rate ↓ [4] 
SD of horizontal position ↓ [11, 19] 
SD of vertical position ↓ [19] 

Blink  Rate ↑ [19] 
 Pupil diameter ↑ [3, 20] 

Performance-based  

 
Vehicle speed Average ↑ [9] ↓ [11] 

SD ↑ [9] ↓ [11] 
Steering wheel  Reversal rate ↑ [11] 

Subjective  
 NASA-TLX ↑ [4] 

 
Recent advancements in technology has allowed for the 

development of less intrusive and much more affordable EEG 
systems, e.g., 4 channels collected wirelessly through a thin 
head band. The new technology is clearly much less intrusive 
and more affordable than research-grade EEG systems and is a 
step toward achieving a monitoring system that may be 
accepted by drivers eventually. Further, these newer systems 
may also be adopted by the research community. Thus, as these 
systems are being further developed, it is important to test their 
efficacy. For example, it is unclear whether these newer EEG 
systems can be used to detect different levels of cognitive load 
experienced by drivers. As an initial step to address this 
question, we conducted a driving simulator study to evaluate 
whether a consumer-grade wireless EEG system can 
differentiate different levels of cognitive taskload experienced 
by drivers. Through a secondary task, we imposed three levels 
of cognitive taskload on our participants and investigated 

whether EEG signals collected from two channels (Fp1: frontal 
polar left, Fp2: frontal polar right) provided significant 
differences among these three taskload levels. 

Although EEG technology advances fast, a challenge that 
remains with these systems is the sensitivity of EEG to artifacts 
[21], for example, facial muscle movements. Thus, in our 
simulator study, we had to ensure that facial muscle movements 
were minimized as we collected EEG data from our participants 
during periods of interest (i.e., different levels of cognitive 
taskload). A variety of secondary tasks have been employed in 
previous driving research to increase cognitive load in a 
controlled manner, such as the n-back task [9, 11], mental 
arithmetic [4, 8], and an auditory-spatial task [19]. Amongst 
these tasks, the n-back task is one of the most widely used and 
established one in the working-memory literature [22]. During 
the n-back task, a series of items (e.g., letters or numbers) are 
presented (visually or aurally) to the participants and 
participants are required to remember and repeat (verbally or 
manually) the items n-position before the current one [22]. In 
driving, this task has been implemented as auditory stimulus 
and continual verbal response [9, 11], and its relation to 
common in-vehicle tasks have been investigated extensively 
[23]. In our experiment, we modified this auditory-verbal 
n-back task to remove the continual verbal response required 
during auditory stimulus presentation (an artifact of the n-back 
task paradigm) which would lead to facial muscle movement 
interference with EEG signals. The effectiveness of this newly 
proposed n-back modification was validated through data 
collected on ECG, GSR, respiration, and eye tracking; we 
compared our findings to the findings of previous driving 
studies that investigated cognitive load. The development and 
validation of this modified n-back task is another contribution 
of this study. Other researchers who may need a similar 
modification can utilize our version given that we provided a 
validation for our version. 

 

II. RELATED RESEARCH 

A. Effects of Cognitive Taskload, in particular N-back Task, 
on Physiology, Eye Tracking, and Vehicle Control 

A variety of tasks and measures have been implemented in 
previous driving research to assess how drivers’ state and 
performance are affected in the presence of external cognitive 
tasks. Some of the relevant studies along with their results are 
presented in Table 1 and they are further detailed below. The 
relationships between increased cognitive taskload and the 
various measures reported in these earlier studies were used to 
validate our n-back task modification.  

Liang and Lee [19], conducted a driving simulator study, in 
which the participants were presented with an auditory-spatial 
task that simulated high cognitive taskload (e.g., what drivers 
may experience while interacting with a navigation system); 
blink rate was found to increase, while SD of horizontal and 
vertical gaze position decreased. Harbluk et al. [4] asked their 
participants to perform mental arithmetic operations in an 
on-road instrumented vehicle study, and found that their 
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participants checked their periphery, mirrors, and instruments 
less frequently with this added cognitive taskload. In another 
on-road study, a paced auditory serial addition task was 
performed by the participants, during which HR was found to 
increase and HR variability was found to decrease [18]. Other 
on-road studies found pupil diameter to increase when drivers 
were asked to perform cognitive tasks secondary to driving [3, 
20]. 

As mentioned earlier, the n-back task has been widely used 
in the working-memory literature [22]. N-back task is also well 
established in driving research and has been used in the form of 
an auditory delayed digit recall task, with auditory stimulus and 
verbal response [9, 11, 23]. In the simulator [9] and on the road 
[11], Mehler et al. tested three n-back levels of increasing 
difficulty: 0-back, 1-back, and 2-back. In both studies, the 
n-task performance decreased as ‘n’ increased, confirming the 
increasing difficulty associated with the three task levels. In 
relation to actual in-vehicle tasks, 1-back received lower 
subjective workload ratings from participants than an easy 
radio task (i.e., single button preset selection), whereas 2-back 
was perceived to be harder than most common in-vehicle tasks 
(e.g., a navigation entry task fell midway between the ratings 
received for 1-back and 2-back tasks) [23].  

In [9], Mehler et al. found HR to increase with increasing 
levels of n-back difficulty. GSR and respiration rate increased 
from baseline to 0-back and from 0-back to 1-back, with no 
significant change from 1-back to 2-back, suggesting a plateau 
for GSR and respiration rate measures at higher levels of 
n-back taskload. Both speed and SD of speed increased from 
1-back to 2-back. In [11], as taskload increased, both HR and 
GSR increased. Speed and SD of speed were higher in the 
baseline level compared to all task levels, with speed being 
further reduced with the 2-back task. Increasing levels of 
taskload decreased the SD of horizontal gaze position, except 
there was no difference between 1-back and 2-back levels. 

B. EEG for Assessing High Cognitive Load 
EEG has been used widely in non-driving domains to assess 

working-memory load. For example, [24] conducted basic 
research by utilizing EEG with the n-back task performed on a 
computer. EEG was also utilized to assess high cognitive load 
in more practical settings, such as aviation [14]. Suppression of 
the power of alpha band in frontal [25, 26] and parietal [27, 28] 
areas have been observed with increasing n-back levels in 
visual-manual n-back task performance in single task situations 
(i.e., when the n-back task is the only task that the participant 
conducts). An increase in the power of the theta band has also 
been observed in the frontal area in similar study settings [26, 
27, 29].  

Relevant research on multi-tasking situations, in particular 
research in the driving domain, appears to be more limited, and 
to focus mostly on primary and secondary tasks that are both 
visual-manual in nature, e.g., [30], [8]. Lei and Roetting [31] 
found a decrease in the power of the alpha band in the parietal 
area and an increase in the power of the theta band in the frontal 
area in a driving simulator study, when the participants 
conducted a visual-manual n-back task. Other driving studies 

we identified that utilized visual-manual secondary tasks (i.e., 
[16], [32]) did not investigate how specific EEG responses 
were affected with added taskload, but rather used all EEG 
signals collected in machine learning algorithms to classify 
driver state.  

Strayer et al. [17] is the only driving study we could identify 
that utilized EEG with auditory-verbal secondary tasks. 
Through event-related potential (ERP), P300 peak latency was 
identified to be sensitive to external cognitive taskload in the 
laboratory in front of a computer; however, this measure 
became unreliable in the driving simulator and on the road in an 
instrumented vehicle. P300 amplitude on the other hand was 
not sensitive to added cognitive taskload in the computer 
setting, but showed some sensitivity to added cognitive 
taskload in the simulator and on the road. Although ERP 
showed reactivity to external taskload, it is not suitable for 
cognitive load detection in real time in uncontrolled settings, 
given that it relies on a response to a specific stimulus (e.g., 
detection response task) that needs to be identified prior to 
measurement [33]. 

Overall, the review of the literature on EEG and driving 
revealed a significant research gap in the use of EEG to detect 
cognitive load experienced by drivers. Further, the driving 
studies reported in this section, which utilized EEG mainly for 
visual-manual secondary tasks, all had research-grade systems. 
As mentioned earlier, there are less intrusive and more 
affordable consumer-grade systems. These systems have the 
potential to be implemented in vehicles in the future with 
further development and they may also be adopted by the 
research community. We could identify only one driving study 
that used a consumer-grade system, but this study focused on 
vigilance [34]. Our study detailed below is the first to 
investigate the reactivity of a consumer-grade EEG system 
(data from Fp1 and Fp2 channels; both in the frontal area) to 
external cognitive taskload placed on drivers. In particular, we 
examined the power of alpha and theta bands. Given the 
findings of the studies cited above, we expected the power of 
the alpha band in the frontal area to decrease and the power of 
the theta band in the frontal area to increase with increasing 
cognitive load experienced by drivers. However, it should be 
noted that although these studies were the closest to our task 
paradigm that we could identify in the existing literature, their 
task paradigms were still different than ours (i.e., they focused 
on visual-manual n-back tasks). Therefore, it was also possible 
that our results could be different than their results.   

As also mentioned earlier, we had to modify the n-back task 
commonly used to study cognitive load in driving, in order to 
ensure that the EEG signal quality was not degraded by verbal 
responses that are an artifact of this commonly used n-back task 
paradigm. Given that the task was altered, another objective of 
our simulator study was to validate that this modification 
worked as expected. 

 

III. DRIVING SIMULATOR EXPERIMENT 
A driving simulator experiment was conducted with three 

cognitive taskload conditions in a within-subject design: 
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baseline (no external secondary task), lower cognitive taskload 
(1-back task), and higher cognitive taskload (2-back task). Each 
condition was completed in a separate drive with the order of 
the three drives counterbalanced across participants.  

A. Participants 
Participants were recruited through campus and online posts 

and were required to drive at least several times per month. To 
improve eye tracking quality, participants were also required to 
be able to drive without glasses (contact lenses were allowed). 
Further, they were screened for proneness to simulator 
sickness. Thirty-seven drivers (18 males and 19 females) with 
an average age of 26.4 (SD: 4.3, Min: 20, Max: 35) completed 
the study. Our sample size was larger than that of most relevant 
research that found effects of external cognitive taskload on 
driver performance, eye tracking, and physiology [e.g., 3, 4, 8, 
18, 19, 20]. The average number of years since our participants 
obtained their first driving license was 8.5 (SD: 3.5, Min: 2.6, 
Max: 15.6). Compensation was C$12 per hour, and participants 
were told that they could receive a bonus of up to C$14 based 
on their secondary task performance as an incentive for 
engaging in the n-back task. The experiment took 
approximately 2.5 hours and all participants were paid the full 
bonus amount regardless of their performance. 

B. Apparatus 
The driving simulator used is a NADS miniSimTM (Fig. 1), a 

fixed-based simulator with three 42-inch screens, creating a 
130o horizontal and 24o vertical field of view at approximately 
1.2 m viewing distance. The centre screen displays the left and 
centre parts of the windshield; the right screen displays the rest 
of the windshield, the rear-view mirror, and the right-side 
window and mirror, while the left screen displays the left-side 
window and mirror. The simulator records driving data at 60 
Hz.  

EEG data was collected using MuseTM by Interaxon (Fig. 1), 
a wireless nonintrusive headband consisting of 2 dry sensors 
located at Fp1 (frontal polar left) and Fp2 (frontal polar right) 
positions and two gel foam electrodes at TP9 and TP10 
positions. The EEG headband was worn around the forehead 
(Fp1 and Fp2) with two electrodes attached behind the ears 
(TP9 and TP10). However, due to poor signal quality at TP9 
and TP10, only the signals from Fp1 and Fp2 were analyzed. 
Thus, the results that we report are obtained using only dry 
electrodes. Fp1 and Fp2 channels are commonly used in 
consumer-grade EEG systems as they are not covered by hair 
and are easier to access with a simple band. These channels are 
in the frontal region, which has been found to show reactivity to 
workload changes as discussed earlier. The MuseLab software 
was used to record and analyze the EEG signals; the sampling 
frequency was 220 Hz and the software calculated the power of 
EEG bands at 10 Hz. 

ECG, GSR, and respiration sensors by Becker Meditec, 
widely used in previous research [e.g., 35, 36], collected data at 
240 Hz using the D-Lab software developed by Ergoneers. 
Solid gel foam electrodes were used for the ECG and GSR 
sensors (Fig. 1). ECG was recorded with three electrodes 

placed on participant’s chest. The GSR sensors were attached 
beneath the bare left foot with one sensor in the middle and the 
other under the heel. The respiration band (Fig. 1) was worn 
around the chest or abdomen, at the position that exhibited most 
heaving when participants breathed. Gaze information was 
collected at 60 Hz through faceLABTM 5.0, a dashboard 
mounted eye-tracker by Seeing Machines (Fig. 1). 
 

 

 
 

Fig. 1. Equipment: NADS miniSimTM driving simulator, EEG headband, 
faceLABTM eye-tracker, and ECG, GSR, and respiration sensors. 

C. Modified N-Back Task 
A modified version of the n-back task based on the one 

utilized in [9] and [11] was used to introduce external cognitive 
load. The original n-back task used in [9] and [11] requires 
participants to listen to a series of single-digit numbers and 
respond verbally with the digit that was presented n-positions 
before (n-back) the current number, right after the current 
number is read to them. Therefore, there is continual verbal 
response during auditory stimulus presentation. Considering 
that facial muscle movements can interfere with EEG signals, 
and that such an artifact of the task paradigm should be 
avoided, we developed a modified version of this n-back task. 
Participants listened to a pre-recorded series of 10 letters, 
separated by approximately 2.5 second intervals, for an overall 
duration of approximately 25 seconds for each n-back task; 
these durations were in line with [9] and [11]. For the 1-back 
task, which was expected to impose less cognitive load than the 
2-back task, participants were asked to count the number of 
times two identical letters appeared in pairs in a sequence, e.g., 
‘FF’. For the 2-back task, participants were asked to count the 
number of times two identical letters appeared in pairs with one 
letter in between, e.g., ‘BHB’. Instead of answering during 
stimulus presentation, participants were asked to verbally 
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respond with the total count of n-back instances at the end of 
each series. Letters instead of numbers were used in the 
modification to minimize the interference in working memory 
of the running total (of n-back instances in a series) with the 
auditory stimulus. Given the larger memory requirement, the 
modified n-back task was hypothesized to be more difficult 
than the n-back task used in [9] and [11], but still be able to 
maintain the order of difficulty from the 1-back to the 2-back 
level. 

D. Driving Task 
The driving scenarios required the participants to follow a 

lead vehicle at a speed of 64.4 km/h (40 mph) on a 4-lane urban 
route with light ambient traffic and some vehicles parked on the 
sides. In each n-back drive, the participants were presented with 
two groups of n-back tasks, each on a straight section of the 
route. Each group consisted of three n-back tasks (a series of 10 
letters each), totalling to six n-back tasks completed within 
each drive. A notification and a brief reminder of the task was 
provided before each group to let the participant know that the 
n-back task was starting. At the end of each group, another 
notification was provided to let the participant know that the 
task had ended.  

To simulate realistic driving scenarios and to gather reaction 
times to roadway events, the lead vehicle braked once per 
n-back task group (deceleration of 6 m/s2), resulting in two 
braking events experienced during the n-back task within a 
drive. These braking events happened randomly during either 
the first or the third n-back task within a group. Two 
corresponding braking events occurred in the baseline drive 
and were positioned in the same section of the route where the 
n-back tasks were presented. Prior to the braking events, the 
lead vehicle speed was adjusted to create a 2 s headway time 
between the participant and the lead vehicles. The headway 
times achieved at the lead vehicle brake onset varied due to 
vehicle dynamics (mean=2.11 s, SD=0.56 s). 

E. Procedures 
Participant eligibility was verified and consent was obtained 

upon arrival. Participants first went through a practice drive in 
the simulator, on a route identical to the one used in the 
experimental drives. They practiced following the lead vehicle 
at a 2 second headway time and experienced lead vehicle 
braking events as they would happen in the experimental 
drives. They were then given written and oral instructions on 
the modified n-back task and practiced it without driving to 
ensure that they fully understood and were capable of doing the 
task. Physiological sensors were then placed on participants 
and the eye tracker was calibrated.  

Next, participants completed another practice drive, this time 
performing the n-back task. However, they were told that this 
was an experimental drive in order to minimize their 
anticipation of where and when lead vehicle braking events 
were to occur in the actual experimental drives. The course was 
the same as the experimental drives and the earlier practice 
drive. In this drive, participants were given a group of three 
1-back tasks and a group of three 2-back tasks. Multiple 
braking events were presented in each group of tasks to 
minimize participants’ anticipation of the systematic nature of 
braking events that were going to happen in the experimental 

drives. Participants were also introduced to the NASA-TLX 
questionnaire at the end of this practice drive. The participants 
then completed the three experimental drives. NASA-TLX was 
collected after each drive through an online survey. Participants 
were given a 5-minute break after each drive. At the end of the 
experiment, participants were debriefed and received their 
payment. 

F. Dependent Variables 
As mentioned earlier, stimulus presentation for a given 

n-back task was approximately 25 seconds long. The data from 
these road segments were used in the analysis of n-back task 
effects; n-back task segments that had a lead vehicle braking 
event were only used for assessing lead vehicle braking 
response and n-back task performance, and were excluded from 
all other analysis. Data collected on the corresponding road 
segments of the baseline drive for approximately equal duration 
was used for comparison purposes.  

Power spectrum density (PSD), Sx(f), which describes the 
distribution of power into frequency components composing a 
signal, was calculated using Fast Fourier Transformation (FFT, 
[37]) method with a hamming window of 256 samples and 
overlap of 234 samples. Then, the power of alpha and theta 
EEG bands (alpha: 7.5-13 Hz; theta: 4-8 Hz) for each channel 
(Fp1 and Fp2) were calculated using integration: 

 
where, P refers to the power of an EEG band; Sx(f) is the PSD of 
the EEG signal; and f1 and f2 are the lower and upper range of 
the frequency range (e.g., 7.5 to 13 Hz for the alpha band). The 
power of each band was then averaged over each 25-second 
segment, which resulted in 4 (an alpha and a theta power value 
for each channel and 2 channels total) EEG data points for each 
25-second segment. In layman’s terms, the power of a band 
(e.g., power of alpha band) can be considered as the amount of 
activity found in a signal within a particular frequency range.  

The experimenters logged the n-back responses manually 
and the percent correct rate was calculated after data collection. 
This rate was calculated by dividing the number of correct 
responses by six (number of n-back tasks within each drive). As 
mentioned previously, out of the six n-back tasks experienced 
within a drive, two had a lead vehicle braking event. 
Considering that a braking response might influence n-back 
performance, a second rate was also calculated for the four 
n-back tasks that did not correspond to a lead vehicle braking 
event.  

Heartbeat identification was performed in MATLAB, using 
the signal processing toolbox. A moving average method with a 
window size of 1/6 seconds was adopted to remove the noise in 
the respiration data. HR, respiration rate, and blink rate were 
calculated as frequency over each 25-second segment, whereas 
GSR, respiration depth, average diameter of the left and right 
pupils, and vehicle speed were calculated as averages over each 
25-second segment. SD of gaze position and SD of vehicle 
speed were also obtained over each 25-second segment. 
Accelerator release time (ART) was calculated from the lead 
vehicle brake light onset to the participant’s foot fully releasing 
the brake pedal (SAE J2944_201506). The calculation of 
NASA-TLX scores followed the method outlined in [38]. 
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G. Data Analysis 
Secondary task performance was analyzed using the 

Friedman test. Other analyses were conducted through mixed 
linear models, with cognitive taskload as a fixed and participant 
as a random factor. Mixed linear models were built in PROC 
MIXED in SAS. Variance-covariance structures were selected 
based on the Bayesian Information Criterion. Normality and 
homoscedasticity were checked. In the mixed linear models, 
from each drive, four data points (from four data segments 
without lead vehicle braking) were used for EEG, HR, GSR, 
respiration rate, blink rate, SD of gaze position, and average 
pupil diameter; two data points were used for ART (from two 
data segments with lead vehicle braking); and one data point 
was used for NASA-TLX (collected at the end of each drive). 

IV. EXPERIMENTAL RESULTS 
Because of technical and data quality issues, GSR data from 

3 participants (due to sensor detachment), HR data from 4 

participants (due to sensor detachment), and ART data from 1 
participant were lost (due to simulator software malfunction). 
Respiration and pupil diameter data were particularly noisy and 
thus were unidentifiable at times, leading to the removal of 61 
data points for respiration rate, 73 data points for respiration 
depth, and 150 data points for pupil diameter (out of 444 total 
data points for each). Although headway time was controlled in 
the experiment to minimize variance in how participants 
experienced lead vehicle braking events, it was not possible to 
perfectly control headway due to vehicle dynamics. There were 
five data points where the participants failed to properly follow 
the lead vehicle, resulting in ARTs that were particularly long 
(studentized residual >4). Thus, these five data points were also 
removed from analysis. Headway time was included as a 
covariate in the analysis of ART. 

The results presented in the following section, in Fig. 2 and 
Table 2, serve as validation for our modified n-back task. EEG 
results are presented in Fig. 3 and Table 3.  

 

 
 
Fig. 2. Boxplots for physiological, eye tracking, driving performance, and subjective measures. The boxplots present minimum, first quartile, median, third quartile, 
and maximum, as well as data points indicated with gray circles and means indicated with hollow diamonds. 

Driving Performance 
& NASA-TLX 

Physiological  

Eye Tracking 
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TABLE 2 
VALIDATION OF THE N-BACK TASK MODIFICATION: ESTIMATED DIFFERENCE (Δ), 95% CONFIDENCE INTERVALS (CI), AND P-VALUES FOR PAIRWISE COMPARISONS 

 

Measures 
1-back vs. Baseline 2-back vs. 1-back 2-back vs. Baseline 
Δ 95% CI p-value Δ 95% CI p-value Δ 95% CI p-value 

Heart rate (beats per min, bpm) 2.5 1.6, 3.5 <.0001 1.3 0.4, 2.2 .006 3.9 2.9, 4.8 <.0001 
GSR (µSiemens) 1.1 0.6, 1.6 <.0001 1.0 0.6, 1.5 <.0001 2.1 2, 2.8 <.0001 
Respiration 
 Rate (per minute) 1.9 1.3, 2.5 <.0001 N.S.   1.7 1.1, 2.3 <.0001 
 Depth -282.4 -442.8, -122.0 .0008 N.S.   -229.0 -338.0, 70.0 .006 
Eye tracking 
 Gaze position SD (cm)          
        horizontal -2.0 -2.5, -1.5 <.0001 -0.8 -1.2, -0.2 .002 -2.8 -3.2, -2.3 <.0001 
        vertical -0.7 -1.1, -0.2 .007 N.S.   -1.0 -1.6, -0.4 .001 
 Blink rate (Hz) 0.07 0.03, 0.10 .0003 N.S.   0.08 0.05, 0.12 <.0001 
 Pupil diameter (mm) 0.11 0.05, 0.18 .0006 0.12 0.06, 0.18 .0004 0.23 0.17, 0.30 <.0001 
Driving Performance 
 Average speed (km/h) -2.1 -3.1, -1.0 .0002 N.S.   -1.6 -2.8, -0.8 .0009 
 SD of speed (km/h) 0.59 0.12, 1.05 .01 N.S.   0.23 0.18, 1.11 .008 
NASA-TLX 13.8 8.0, 19.7 <.0001 14.5 8.6, 20.3 <.0001 28.3 22.5, 34.2 <.0001 

      N.S.: NON-SIGNIFICANT (P > .05) 
 

  
(a) Alpha                        (b) Theta 
 

Fig. 3. Boxplots for EEG results: the power of (a) alpha and (b) theta bands at Fp1 and Fp2 positions. 
 
 

TABLE 3 
PAIRWISE COMPARISONS FOR POWER OF EEG BANDS 

                              
EEG Measures 

1-back vs. Baseline 2-back vs. 1-back 2-back vs. Baseline 
Δ 95% CI p-value Δ 95% CI p-value Δ 95% CI p-value 

Alpha (Bels)          
 Fp1 -0.092 -0.152, -0.031 .003 -0.117 -0.178, -0.057 .0002 -0.209 -0.293, -0.125 <.0001 
 Fp2 -0.179 -0.256, -0.103 <.0001 -0.147 -0.224, -0.070 .0003 -0.326 -0.432, -0.221 <.0001 
Theta (Bels)          
 Fp1 N.S.   -0.077 -0.122, -0.031 .001 -0.113 -0.159, -0.068 <.0001 
 Fp2 -0.083 -0.142, -0.026 .007 -0.076 -0.136, -0.017 .01 -0.159 -0.240, -0.078 .0002 

       N.S.: NON-SIGNIFICANT (P > .05) 
 

A. Validation of the Modified N-Back Task 
The results reported in this section show that the modified 

n-back task influenced secondary task performance, ECG, 
GSR, respiration, eye tracking, driving performance, and 
subjective workload as expected based on previous research. 

As mentioned earlier, a total of six n-back tasks were 
completed for each n-back drive. Correct response rate for 
2-back (mean: 66.7%, SD: 21.2) was lower than 1-back (mean: 
94.1%, SD: 9.8%), χ2(1) = 31.0, p < .0001. When the n-back 
tasks that corresponded to a lead vehicle braking event (2 per 
drive) were excluded from analysis, the 2-back task (mean: 
71.6%, SD: 25.8) still had a lower correct response rate than the 

1-back task (mean: 95.9%, SD: 9.3), χ2(1) = 19.2, p < .0001. 
Heart rate (F(2, 66) = 35.8, p < .0001), GSR (F(2, 64) = 

21.48, p < .0001), SD of horizontal gaze position (F(2, 72) = 
75.04, p < .0001), average pupil diameter (F(2, 47) = 28.66, p 
<.0001), and NASA TLX (F(2, 72) = 46.34, p < .0001) showed 
significant stepwise trends with increasing cognitive load. 
Heart rate increased by 2.5 bpm from baseline to 1-back, and by 
1.3 bmp from 1-back to 2-back. GSR increased by 1.1 
µSiemens from baseline to 1-back, and by 1.0 µSiemens from 
1-back to 2-back. SD of horizontal gaze position decreased by 
2.0 cm from baseline to 1-back, and by 0.8 cm from 1-back to 
2-back. The average pupil diameter increased by 0.11 mm from 
baseline to 1-back and by 0.12 mm from 1-back to 2-back. 
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Finally, NASA TLX increased by 13.8 from baseline to 1-back, 
and by 14.5 from 1-back to 2-back. 

Respiration rate (F(2, 63) = 25.83, p < .0001) and depth 
(F(2,61) = 6.93, p = 0.002), SD of vertical gaze position (F(2, 
72) = 5.98, p = .004), blink rate (F(2, 72) = 11.89, p < .0001), 
average speed (F(2, 72) = 9.29, p = .0003), and SD of speed 
(F(2,72) = 4.61, p = .01) showed a response to added cognitive 
load, but with no significant differences between 1-back and 
2-back levels. ART was found to increase with increasing 
headway time (F(1, 151) = 9.69, p = .002); cognitive taskload 
did not have an effect on ART (F(2, 184) = 1.82, p = .17). 

B. Effects of the Modified N-Back Task on EEG 
For EEG signals, both the power of alpha (Fp1: F(2, 72) = 

12.42, p < .0001; Fp2: F(2, 72) = 19.15, p < .0001) and theta 
bands (Fp1: F(2, 72) = 12.84, p < .0001; Fp2: F(2,72) = 7.71, p 
= .0009) decreased stepwise with increasing cognitive load, 
except for a non-significant comparison between baseline and 
1-back for Fp1 theta band (Fig. 3, Table 3). 
 

V. DISCUSSION 
In a driving simulator study with 37 participants, we 

explored the influence of external cognitive taskload on 
driver’s EEG signals collected through a consumer-grade EEG 
system at two frontal positions. The aim was to assess whether 
it is feasible to utilize a relatively non-intrusive and cheap EEG 
system to differentiate between different levels of cognitive 
taskload experienced by drivers; our study was the first to 
investigate this topic. Improvements in cost and intrusiveness 
bring EEG systems closer to in-vehicle implementation; 
however, research is needed to test whether these newer 
systems are sensitive enough to capture different driver states. 
Different levels of cognitive taskload were imposed on the 
participants through the n-back task, a commonly used task for 
studying working memory capacity  [22]. In order to ensure that 
the EEG signal quality was not degraded by verbal responses 
that were an artifact of the n-back task paradigm, we modified 
the n-back task to move the verbal response required during 
stimulus presentation to after a string of stimuli is presented. 
The effectiveness of this modified n-back task on imposing 
increasing levels of cognitive load was validated using a variety 
of physiological measures along with eye-tracking, driving 
performance, and subjective measures. 

A. The Effectiveness of the Modified N-back Task 
In driving research, the n-back task has been implemented 

and widely used as auditory stimulus and continual verbal 
response [9, 11]: participants listen to a series of single-digit 
numbers and respond verbally with the digit that was presented 
n-positions before the current number, right after the current 
number is read to them. Our modification moved the verbal 
response required during stimulus presentation to after a string 
of stimuli is presented; and replaced numbers with letters to 
minimize the interference in working memory of the running 
total of n-back instances (required response) with the auditory 
stimulus. Overall, the modified n-back task was effective in 
imposing differentiable levels of cognitive load. Participants 

performed worse on the 2-back compared to 1-back task. 
Subjective workload increased from the baseline to 1-back, and 
from 1-back to 2-back. The physiological, eye-tracking, and 
driving performance results, which were in line with previous 
research, also suggest that the modification was successful in 
imposing differentiable levels of cognitive load. 

Heart rate and GSR showed a stepwise increase from 
baseline to 1-back, and then to 2-back; a finding in line with the 
results of both [9] and [11], with the exception that [9] did not 
show a significant difference between 1-back and 2-back levels 
for GSR. The difference may be attributed to [9] being an 
on-road study, whereas both our study as well as [11] being 
conducted in a simulator. Our respiration rate results were same 
as the findings of [9]; [11] did not report respiration data. 
Further, we also looked at respiration depth, which was not a 
measure used in earlier studies of similar nature. We found that 
the statistical significances in respiration depth follow the 
results of respiration rate. 

As for eye tracking measures, we found a stepwise decrease 
in horizontal gaze position variability and a stepwise increase in 
pupil diameter with increasing levels of cognitive taskload; 
[11] also found similar trends in horizontal gaze position but no 
difference between 1-back and 2-back; [9] did not report on 
gaze data. These earlier n-back studies also did not report on 
vertical gaze position variability, pupil diameter, and blink rate; 
however, our results on these measures were in line with [3, 19, 
20], which investigated driver cognitive load using different 
task paradigms. 

The two previous n-back studies discussed above [9, 11] 
reported conflicting results for average speed and SD of speed. 
Our study does not support one over the other, but introduces 
additional conflict. In our study, average speed was found to 
decrease and SD of speed was found to increase with increased 
taskload. In [9], which is an on-road study, an increase of 
average speed was observed; whereas in [11] average speed 
was found to decrease. Thus, our study is in line with [11] in 
terms of average speed. However, we found SD of speed to 
increase whereas [11] found it to decrease with increased 
taskload. It appears that the data collection medium as well as 
the particular scenarios utilized in different experiments have a 
large impact on the speed maintenance, potentially masking the 
effects of cognitive taskload. 

It should be noted that the modification used in our n-back 
version that required the maintenance of the running total in 
working memory may have resulted in our task to be more 
difficult than the earlier n-back task used in the driving domain 
[9, 11]. The correct response rates observed in our study 
(1-back: 94%, 2-back: 68%) were lower than the ones observed 
in [9] (1-back: 98%, 2-back: 88%) and [11] (1-back: 95%, 
2-back: 85%). Our response accuracy calculations are different 
than the ones used in [9, 11] given the differences in tasks, thus, 
the response rates found in our study may not be directly 
comparable to these earlier studies. Still, further research is 
needed to compare our task to earlier versions of n-back. It 
should also be noted that in our version of the n-back task, there 
is a chance that multiple mistakes made during a single task 
sequence may offset each other. This limitation should be 
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considered by researchers who may put more emphasis on the 
task performance accuracy than we did in the current study; our 
motivation for developing the task was to increase taskload 
without degrading EEG signal quality, which we have 
achieved. Another limitation of our research is that we have not 
yet studied how the modified n-back task compares to common 
tasks that drivers perform in their vehicles. A comparison is 
needed such as the one reported in [23].   

B. EEG in Distinguishing Driver Cognitive Taskload 
The results showed that the consumer-grade EEG headset 

that was utilized in our experiment was sensitive in 
differentiating between the different levels of cognitive 
taskload imposed on the drivers. The two positions that were 
utilized, i.e., Fp1 and Fp2, are in the frontal region of the brain. 
Based on the literature discussed in our background section, we 
focused on alpha and theta bands for these two positions, which 
are known to show reactivity to high cognitive load levels. We 
found that the power of alpha band decreased for both positions 
with increasing taskload from the baseline to 1-back, and then 
to 2-back. This suppression of the alpha band trend observed in 
the frontal region was in line with both basic studies conducted 
in computer settings [25, 26] as well as a driving simulator 
study that used a visual-manual n-back task [31].  

However, we found the power of the theta band to decrease 
as well with increasing cognitive taskload. Previous literature 
which reported an effect on theta for the frontal region, suggests 
the opposite direction, with theta band power increasing with 
increasing load. It should be noted that these earlier studies 
either focused on a single-task paradigm (i.e., the conduct of 
n-back alone with no additional tasks) [26, 27, 29] or utilized a 
visual-manual n-back task along with the primary task of 
driving [31]. The dissimilarities in task characteristics may help 
explain this seeming contradiction between our findings and 
those of earlier studies. Another potential explanation is that 
our participants may have experienced a higher degree of stress 
than those in [31] given that our participants drove through a 
more complex driving environment and arguably performed a 
more difficult secondary task. An n-back study conducted by 
[39] showed the power of the frontal theta band to decrease 
with increasing stress. It is also possible that the particular EEG 
device we used had issues related to capturing this frequency 
range. Further research is needed to identify the reasons of this 
contradicting finding.  

Future research should also validate our findings and test the 
reliability of the sensors we used with a larger sample size, 
under different driving conditions, in field trials, and using 
research-grade EEG systems. Although we showed that a 
consumer-grade EEG system can differentiate between 
increasing levels of cognitive taskload imposed on drivers, we 
only utilized three difficulty levels. The sensitivity threshold of 
these systems can be assessed by investigating smaller changes 
in taskload. Further, we only focused on cognitive load 
imposed through the auditory channel and verbal coding. This 
paradigm is only representative of some of the external 
demands that drivers experience. Future research should also 
investigate different types of secondary tasks, including other 

cognitive secondary tasks that have been validated in earlier 
research, and whether and how these EEG systems react in 
response. Finally, although we have shown that a 
consumer-grade EEG system can provide useful information 
about driver state, these systems are still sensitive to artifacts 
such as facial or body movements that would naturally occur 
while driving and thus need further development before they 
can be successfully implemented within vehicles.  

ACKNOWLEDGMENT 
We gratefully acknowledge Amirhossein Aghaei, Winnie 

Chen, Mahdi Marsousi, George Liu, and Nicole Wongsoo for 
their contributions. Earlier findings from a limited number of 
initial participants were reported in the Proceedings of the 
Transportation Research Board Annual Meeting, 2017. 

REFERENCES 
[1] T. A. Dingus et al., "Driver crash risk factors and prevalence evaluation 

using naturalistic driving data," Proceedings of the National Academy of 
Sciences, vol. 113, no. 10, pp. 2636-2641, 2016. 

[2] F. G. Paas and J. J. Van Merriënboer, "Instructional control of cognitive 
load in the training of complex cognitive tasks," Educational Psychology 
Review, vol. 6, no. 4, pp. 351-371, 1994. 

[3] M. A. Recarte and L. M. Nunes, "Effects of verbal and spatial-imagery 
tasks on eye fixations while driving," Journal of Experimental 
Psychology: Applied, vol. 6, no. 1, p. 31, 2000. 

[4] J. L. Harbluk, Y. I. Noy, P. L. Trbovich, and M. Eizenman, "An on-road 
assessment of cognitive distraction: Impacts on drivers’ visual behavior 
and braking performance," Accident Analysis & Prevention, vol. 39, no. 
2, pp. 372-379, 2007. 

[5] B. Reimer et al., "A driving simulator study examining phone dialing with 
an iphone vs. a button style flip-phone," in Proceeding of Human Factors 
and Ergonomics Society Annual Meeting, 2012, pp. 2191-2195, Los 
Angeles, CA: Sage Publications. 

[6] K. Young and M. Regan, "Driver distraction: a review of the literature," 
in Distracted Driving, I. J. Faulks, M. Hammer, M. Stevenson, J. Brown, 
A. Porter, and J. D. Irwin, Eds. Sydney, NSW, Australia: Australasian 
College of Road Safety, 2007, pp. 379-405. 

[7] Y. Liang, M. L. Reyes, and J. D. Lee, "Real-time detection of driver 
cognitive distraction using support vector machines," IEEE Trans. Intell. 
Transp. Syst., vol. 8, pp. 340-350, 2007. 

[8] K. Ryu and R. Myung, "Evaluation of mental workload with a combined 
measure based on physiological indices during a dual task of tracking and 
mental arithmetic," International Journal of Industrial Ergonomics, vol. 
35, no. 11, pp. 991-1009, 2005. 

[9] B. Mehler, B. Reimer, J. F. Coughlin, and J. a. Dusek, "Impact of 
incremental increases in cognitive workload on physiological arousal and 
performance in young adult drivers," Transportation Research Record, 
no. 2138, pp. 6-12, 2009. 

[10] S. Miller, "Literature review workload measures," University of Iowa, 
Iowa City, IA, USA, ID: N01-006, Aug. 2001. 

[11] B. Mehler, B. Reimer, and J. F. Coughlin, "Sensitivity of physiological 
measures for detecting systematic variations in cognitive demand from a 
working memory task: an on-road study across three age groups," Human 
Factors, vol. 54, no. 3, pp. 396-412, 2012. 

[12] A. J. Camm et al., "Heart rate variability: standards of measurement, 
physiological interpretation and clinical use. Task Force of the European 
Society of Cardiology and the North American Society of Pacing and 
Electrophysiology," Circulation, vol. 93, no. 5, pp. 1043-1065, 1996. 

[13] A. H. Roscoe, "Assessing pilot workload. Why measure heart rate, HRV 
and respiration?," Biological Psychology, vol. 34, no. 2, pp. 259-287, 
1992. 

[14] G. Borghini, L. Astolfi, G. Vecchiato, D. Mattia, and F. Babiloni, 
"Measuring neurophysiological signals in aircraft pilots and car drivers 
for the assessment of mental workload, fatigue and drowsiness," 
Neuroscience and Biobehavioral Reviews, vol. 44, pp. 58-75, 2014. 

[15] S. Fazli et al., "Enhanced performance by a hybrid NIRS–EEG brain 
computer interface," Neuroimage, vol. 59, no. 1, pp. 519-529, 2012. 



THMS-18-01-0038.R3 
 

 

10 

[16] Y. K. Wang, T. P. Jung, and C. T. Lin, "EEG-based attention tracking 
during distracted driving," IEEE Trans. Neural Syst. Rehabil. Eng., vol. 
23, no. 6, pp. 1085-1094, 2015. 

[17] D. L. Strayer, J. Turrill, J. M. Cooper, J. R. Coleman, N. Medeiros-Ward, 
and F. Biondi, "Assessing cognitive distraction in the automobile," 
Human Factors, vol. 57, no. 8, pp. 1300-1324, 2015. 

[18] K. A. Brookhuis, G. de Vries, and D. de Waard, "The effects of mobile 
telephoning on driving performance," Accident Analysis & Prevention, 
vol. 23, no. 4, pp. 309-316, 1991. 

[19] Y. Liang and J. D. Lee, "Combining cognitive and visual distraction: less 
than the sum of its parts," Accident Analysis & Prevention, vol. 42, no. 3, 
pp. 881-890, 2010. 

[20] M. A. Recarte and L. M. Nunes, "Mental workload while driving: effects 
on visual search, discrimination, and decision making," Journal of 
Experimental Psychology: Applied, vol. 9, no. 2, p. 119, 2003. 

[21] J. A. Urigüen and B. Garcia-Zapirain, "EEG artifact 
removal—state-of-the-art and guidelines," Journal of Neural 
Engineering, vol. 12, no. 3, p. 031001, 2015. 

[22] A. M. Owen, K. M. McMillan, A. R. Laird, and E. Bullmore, "N‐back 
working memory paradigm: a meta‐analysis of normative functional 
neuroimaging studies," Human Brain Mapping, vol. 25, no. 1, pp. 46-59, 
2005. 

[23] B. Mehler, B. Reimer, J. Dobres, and J. F. Coughlin, "MIT/CSRC project 
on assessing the demands of voice based In-vehicle interfaces phase II 
experiment 3 -2015 Toyota Corolla (2015b)," Massachusetts Institute of 
Technology, Cambridge, MA, USA,, Tech. Rep. 2015-14, 2015. 

[24] S. Wang, J. Gwizdka, and W. A. Chaovalitwongse, "Using wireless EEG 
signals to assess memory workload in the n-back task," IEEE Trans. 
Human–Mach. Syst., vol. 46, no. 3, pp. 424-435, 2016. 

[25] A. Gevins and M. E. Smith, "Neurophysiological measures of working 
memory and individual differences in cognitive ability and cognitive 
style," Cerebral Cortex, vol. 10, no. 9, pp. 829-839, 2000. 

[26] A. Gevins et al., "Monitoring working memory load during 
computer-based tasks with EEG pattern recognition methods," Human 
Factors, vol. 40, no. 1, pp. 79-91, 1998. 

[27] A. Gevins, M. E. Smith, L. McEvoy, and D. Yu, "High-resolution EEG 
mapping of cortical activation related to working memory: effects of task 
difficulty, type of processing, and practice," Cerebral Cortex, vol. 7, no. 
4, pp. 374-385, 1997. 

[28] Y. Chen and X. Huang, "Modulation of alpha and beta oscillations during 
an n-back task with varying temporal memory load," Frontiers in 
Psychology, vol. 6, 2016, Art. no. 2031. 

[29] M.-P. Deiber et al., "Distinction between perceptual and attentional 
processing in working memory tasks: a study of phase-locked and 
induced oscillatory brain dynamics," Journal of Cognitive Neuroscience, 
vol. 19, no. 1, pp. 158-172, 2007. 

[30] M. E. Smith, A. Gevins, H. Brown, A. Karnik, and R. Du, "Monitoring 
task loading with multivariate EEG measures during complex forms of 
human-computer interaction," Human Factors, vol. 43, no. 3, pp. 
366-380, 2001. 

[31] S. Lei and M. Roetting, "Influence of task combination on EEG spectrum 
modulation for driver workload estimation," Human Factors, vol. 53, no. 
2, pp. 168-179, 2011. 

[32] Y. K. Wang, S. A. Chen, and C. T. Lin, "An EEG-based brain-computer 
interface for dual task driving detection," Neurocomputing, vol. 129, pp. 
85-93, 2014. 

[33] S. Sutton, M. Braren, J. Zubin, and E. John, "Evoked-potential correlates 
of stimulus uncertainty," Science, vol. 150, no. 3700, pp. 1187-1188, 
1965. 

[34] C.-T. Lin et al., "Wireless and wearable EEG system for evaluating driver 
vigilance," IEEE Trans. Biomed. Circuits Syst., vol. 8, no. 2, pp. 165-176, 
2014. 

[35] M. Schultze-Kraft, S. Dähne, M. Gugler, G. Curio, and B. Blankertz, 
"Unsupervised classification of operator workload from brain signals," 
Journal of Neural Engineering, vol. 13, no. 3, p. 036008, 2016. 

[36] A. Schwerdtfeger and P. Friedrich-Mai, "Social interaction moderates the 
relationship between depressive mood and heart rate variability: Evidence 
from an ambulatory monitoring study," Health Psychology, vol. 28, no. 4, 
p. 501, 2009. 

[37] P. Welch, "The use of fast Fourier transform for the estimation of power 
spectra: a method based on time averaging over short, modified 
periodograms," IEEE Trans. Audio Electroacoust., vol. 15, no. 2, pp. 
70-73, 1967. 

[38] S. Hart, G., "NASA-Task Load Index (NASA-TLX); 20 years later," in 
Proceedings of Human Factors and Ergonomics Society Annual Meeting, 
2006, pp. 904-908, Los Angeles, CA: Sage Publications. 

[39] M. Gärtner, L. Rohde-Liebenau, S. Grimm, and M. Bajbouj, "Working 
memory-related frontal theta activity is decreased under acute stress," 
Psychoneuroendocrinology, vol. 43, pp. 105-113, 2014. 

 
 Dengbo He received his bachelor’s degree 
in vehicle engineering from Hunan 
University, Changsha, China, in 2012 and 
his M.S. degree in mechanical engineering 
from Shanghai Jiao Tong University, 
Shanghai, China, in 2016. He is currently a 
Ph.D. student at the University of Toronto in 
the Mechanical and Industrial Engineering 

Department. His research interests include human factors, 
driver behavior, and vehicle dynamics and control. 
 

Birsen Donmez (M’10-SM’14) received 
her B.S. degree in mechanical engineering 
from Bogazici University, Istanbul, 
Turkey, in 2001, and M.S. and Ph.D. 
degrees in industrial engineering in 2004 
and 2007, respectively, and M.S. degree in 
statistics in 2007 from the University of 
Iowa, Iowa City, IA, USA. She is currently 

an Associate Professor at the University of Toronto, 
Mechanical & Industrial Engineering and is the Canada 
Research Chair in Human Factors and Transportation.  

Donmez serves on multiple Transportation Research Board 
committees and as an associate editor for IEEE Transactions on 
Human-Machine Systems and has served as the General Chair 
for AutomotiveUI’18. 

 
Cheng Chen Liu received her B.A.Sc. 
and M.A.Sc. degrees in computer 
engineering from, University of Toronto, 
Toronto, Ontario, Canada in 2014 and 
2017 respectively. Her research interests 
include machine learning and cognitive 
distraction in drivers. 
 

 
Konstantinos N. Plataniotis (S’93-M’95- 
SM’03-F’12)  is a Professor  and  the  Bell  
Canada  Chair in Multimedia with the ECE 
Department at the University of Toronto. 
He is the founder and inaugural 
Director-Research for the Identity, Privacy 
and Security Institute and has served as the 
Director for the Knowledge Media Design 

Institute at the University of Toronto from 2010 to 2012.  
    Dr. Plataniotis is a Fellow of the Engineering Institute of 
Canada. He has served as the Editor-in-Chief of the IEEE 
Signal Processing Letters, as General Co-chair for 2017 IEEE 
GlobalSIP and the 2018 IEEE International Conference on 
Image Processing, and as Technical Co-Chair of the IEEE 2013 
International Conference in Acoustics, Speech and Signal 
Processing. He was the IEEE Signal Processing Society Vice 
President for Membership (2014 -2016).  


