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PART III – Build Linear Mixed Effect Models  

In Part II, we imported the data Donmez.csv to R. As a reminder, Experience and SecondaryTask are between subject 

variables that are crossed. Participants (denoted by Participant_ID) completed four scenarios so they have four data 

points each. Thus, participant is a random factor.   

In this section we will analyze the variable TTFG (time until first glance) through linear mixed effects modeling.  

 

Linear mixed effect models can be built hierarchically. Below, we start with a fixed intercept model, followed by a 

random intercept model, and then add fixed effects. At each step, the anova() function is used to compare the different 

models. This hierarchical model fitting is done here as an exercise. Normally when we analyze an experimental 

dataset, we would build the model to include all effects of interest rather than performing forward or backward 

selection. Further, with each model built, assumptions have to be checked.  

 

Use the plot(your_model_name) and qqnorm(your_model_name, abline = c(0,1)) functions to create residual plots. 

We skip this step below but this has to be done for every model built.  

 

You can read more about each function mentioned below using help(function_name). 

 

7. Fixed intercept model 

 

> F.Int <- gls(TTFG ~ 1, data = data, method = "ML",na.action = na.omit) 

> summary(F.Int) 

 

The gls() function fits linear models using generalized least squares. In this function, a single mean is fit to the data 

(i.e. grand mean). method specifies the type of estimation the function will use (Maximum Likelihood Estimation in 

this case), and the argument na.action = na.omit will allow you to omit missing data in the calculation of the model 

parameters. The Summary() function will allow you to view the model fit and estimated parameters.  

8. Random Intercept model 

 

> R.Int <- lme(TTFG ~ 1, random = ~1|Participant_ID, data = data, method = "ML", na.action = na.omit) 

> summary(R.Int) 

The lme() function fits linear-mixed effects models. Here, we are regressing TTFG on an intercept, that is set to vary 

across participants (i.e. estimating a mean glance time for each participant, as well as a grand mean). The random 

component is specified by the argument random = ~1|Participant_ID. This lets intercepts vary across participants 

(i.e., participant is introduced as a random factor). Figure 2 shows the summary() of this model.   

The anova() function can be used to test whether intercepts are random (i.e., participant is a random factor). This is 

comparable to testing the intraclass correlation; if participant is significant, it means between participant variance is 

large. You can examine the residual term to see the within person variance. Here, the between group variance is 

approx. 1.044, and the within group is approx. 25.40. Based on the equation for the intraclass correlation coefficient 

(1.044/25.40 + 1.044), the intraclass correlation coefficient is small (0.04). Therefore, random slopes may not be 

significant, which is confirmed in Figure 3. However, this finding does not mean that we should drop the random 

participant term from our model since we have not yet built the model that captures this experiment.   
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Figure 2: Summary(R.Int). The model parameters for the random intercept model. The highlighted box shows the 

standard deviation estimates for the random components (intercepts, i.e. participants, and the error term).  

> anova (F.Int, R.Int)  

 

Figure 3: anova() function comparing the fixed intercept to random intercept model; the random intercept model is 

not a significant improvement, meaning participants are not a significant random effect. 

Another function available to you to explore your model is coef(), which will display the estimated parameters for 

each effect for each participant.  

> coef(R.Int) 

9. Mixed effects model (random intercept + fixed effects) 

> Mixed <- lme(TTFG ~ Experience*SecondaryTask, data = data, random = ~1|Participant_ID, 

method="ML", na.action = na.omit) 

>  anova(R.Int_F.Eff, type ="m") 

> summary(R.Int_F.Eff.Int) 

The fixed effects, experience (Experienced = 0, Novice = 1), secondary task (0 = No, 1 = Yes) and their interaction 

are entered in the above model. Our summary shows that the Experience:SecondaryTask interaction is not significant 

(p < 0.69); the following model omits the interaction variable. 
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> R.Int_F.Eff<-lme(TTFG ~ Experience + SecondaryTask, data = data, random = ~1|Participant_ID, 

method="ML", na.action = na.omit) 

> summary(R.Int_F.Eff) 

 

Figure 4: Results from a random intercept, fixed effect model.  

Results show that experience and secondary task, are both significant at a p < 0.05. The beta weights indicate that 

novice drivers took 2.67 seconds longer (on the average) than experienced drivers to look at an anticipatory cue after 

it became available. Further, the beta weight for secondary task indicated that drivers in the secondary task condition 

took 2.04 seconds longer (on the average) to look at an anticipatory cue compared to drivers not in that condition.  

10. Mixed effects model (different variance/covariance structures for within group variance) 

Lastly, the variance-covariance structure for the repeated measures (i.e. scenarios) within the model can be specified. 

Below we try CS and AR(1). The default for the lme() function is to use an independence model.  

> Mixed.CS<-lme(TTFG ~ Experience + SecondaryTask, data = data, random = ~1|Participant_ID, correlation 

= corCAR1(form = ~ 1|Participant_ID), method="ML", na.action = na.omit)    

> summary(Mixed.CS) 

 

> Mixed.AR<-lme(TTFG ~ Experience + SecondaryTask, data = data, random = ~1|Participant_ID, 

correlation = corCAR1(form = ~ 1|Participant_ID), method="ML", na.action = na.omit)    

> summary(Mixed.AR)  

 

Compare the three models you built (Mixed, Mixed.CS, Mixed.AR) in terms of which one is the best fit to this data? 

Don’t forget to check the residual plots for each model. Are there any assumptions violated? If so, how can this be 

handled.   


