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1.1 Motivation for Driver State Estimation 
 
Technological advancements in the recent past have led to increasingly intelligent vehicle 
technologies, which aim to track and deduce the driver’s state [1-3] as well as the state of 
the driving environment [4], predict driver intent [5, 6], and warn the driver when certain 
critical events like vehicle lane departures occur [1, 6]. An example of such technology in 
production is the Mercedes-Benz Fatigue Detection System [7], which uses sensors to 
detect drowsiness-related changes in driving style. Although many of the above-
mentioned capabilities are still in development, such systems have the potential to 
enhance safety by detecting driver impairment.  

One type of driver impairment that is of major concern for safety is driver 
distraction [8], which is defined as “the diversion of attention away from activities critical 
for safe driving toward a competing activity” [9]. In addition to increasingly intelligent 
vehicle technologies, technological advancements in the recent past have also given rise 
to infotainment devices that are either built in (e.g., GPS navigation) or carried into (e.g., 
cell phones) the vehicle. These infotainment devices are potential sources of driver 
distraction as they can compete with the driving task for drivers’ mental resources. In 
general, driving is a cognitively demanding, mainly visual perception-manual control task 
that heavily relies on attention. As in-vehicle infotainment systems are becoming more 
prevalent, the issue of driver distraction becomes of greater concern and the need to 
estimate driver’s state and intervene when necessary also increases.  

Although driver distraction caused by visual-manual tasks that are secondary to 
driving (e.g., texting) is especially detrimental to safety as these tasks divert visual 
attention away from the roadway [8], tasks that are auditory-verbal in nature are also of 
concern as they are becoming more common with the rise of voice-command interfaces 
within the vehicle. In fact, several simulator and on-road studies indicate that high 
cognitive load caused by auditory-verbal tasks secondary to driving (i.e., secondary or 
non-driving tasks) impairs drivers’ visual scanning behaviors and driving performance 
[10, 11]. Therefore, it is necessary to consider the effects of auditory-verbal secondary 
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tasks on drivers’ cognitive load, a multidimensional construct representing the load that 
performing a particular task imposes on the drivers’ cognitive system [12]. What the 
driver experiences, i.e., cognitive load, depends on taskload (based solely on task 
characteristics), the individual driver characteristics, and the cognitive capacity that the 
driver allocates to different tasks [12]. Errors increase and performance becomes less 
efficient when humans are cognitively overloaded [13]. Potential sources of overload or 
distraction, may be both outside (e.g., high traffic or bad weather) or inside the vehicle 
(e.g., information from cellphones [13], infotainment devices [14], or the dashboard). 
Therefore, intelligent vehicle systems should not only strive to detect when visual 
attention is diverted away from the road, but also strive to detect high levels of cognitive 
load experienced by drivers that can lead to decrements in visual scanning and driving 
performance [e.g., 15]. With this information, human-computer interfaces within the 
vehicle can be adapted to enhance safety.  
 
1.2 Driver Cognitive Load Detection Methods 
 
As stated earlier, driving can be a cognitively demanding task, such as when navigating 
through high traffic density, poor weather, or unfamiliar driving environments. 
Interactions with devices that are built into the vehicle (e.g., navigational displays) and 
are carried-in (e.g., smartphones) can further claim cognitive resources and add to the 
level of demand experienced by drivers, potentially leading to attention and response 
impairments. Although drivers can moderate their cognitive load to some extent, such as 
by reducing their speed, avoiding lane changes, and increasing headway [16, 17], these 
actions  may not be sufficient to fully compensate for the external demands placed on the 
drivers. By detecting driver cognitive load in real-time, in-vehicle technologies can adapt 
to the level of load experienced by the driver and, for example, filter information content, 
delay notifications, and block access to certain actions. Piechulla et al. [18] developed a 
prototype system to help drivers allocate their attention in difficult driving situations. The 
authors found a reduction in cognitive load in the adaptive telephone condition where 
incoming phone calls were automatically filtered when estimated cognitive load exceeded 
a predetermined threshold. Real-time assessment of cognitive load can also be used to 
intelligently transfer control to the driver in automated vehicles.  
 
1.2.1 Cognitive Load Measures 
 
Various measures can be used to estimate cognitive load. These measures can be 
categorized into four groups [19]: a) physiological measures, such as 
Electroencephalogram (EEG), Electrocardiography (ECG), and galvanic skin response 
(GSR); b) eye tracking measures, such as gaze position and blink rate; c) performance-
based measures, such as vehicle speed; and d) subjective measures, such as NASA Task 
Load Index [20]. Table 1 provides a summary of cognitive load measures and their 
response to increased cognitive secondary task difficulty (i.e., cognitive taskload) in 
driving studies. 

Although subjective measures are informative for cognitive load assessment in 
research settings, they are not appropriate for real-time assessment in the vehicle as their 
collection would interfere with the performance of the driving task [21]. Physiological, 
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eye-tracking, and performance-based measures are suitable for real-time cognitive load 
detection. In particular, previous literature has identified physiological measures, such as 
EEG, heart rate, and GSR, as valuable predictors for drivers’ cognitive load estimation in 
real-time [22-25]. For example, EEG, a measurement of the electrical activity of the brain 
[26] provides very high temporal resolution in detecting changes in cognitive activity 
[27] as it is sampled at high frequencies, e.g., 500 Hz in Wang et al. [22]. This high 
resolution property makes EEG particularly suitable for driving applications, where the 
conditions and drivers’ tasks can change very rapidly. GSR, a measure of skin 
conductance, has also been proven to be sensitive to changes in cognitive load, but its 
response is not as fast as EEG’s response to shifts in cognitive load; e.g., 3 seconds 
latency after stimulus, as suggested by Wagner and Wagner [28]. In general, different 
measures have varying advantages and disadvantages. Most physiological measures 
require the drivers to wear sensors on their body at this point in time, which can be 
intrusive to the drivers; accuracy of eye-tracking is highly affected by lighting conditions 
[24]; and driving performance measures are affected not only by cognitive load but by 
several other factors, such as road conditions. Therefore, in practice, multiple measures 
may need to be combined to boost the performance of cognitive load detection 
algorithms.  

 
 

Table 1 Summary of Example Cognitive Load Measures. 
 

Category Trend with Increased Cognitive Taskload 
Physiological Increase in EEG power of alpha band [26, 29], heart rate [30-

32], and GSR [30, 31] 
Eye tracking Decrease in number of glances to periphery, mirror, 

instrument panel [11], decrease in standard deviation of 
horizontal and vertical gaze position [31-33], and increase in 
blink rate [33] 

Performance-based Decrease in average speed and increase in steering wheel 
reversal rate [31] 

Subjective Increase in NASA Task Load Index [11] 
 
 
1.2.2 Cognitive Load Detection through Physiological Measures 
 
As stated above, although different types of measures are reactive to changes in cognitive 
load, physiological measures have been identified to be valuable predictors for driver 
cognitive load estimation in real-time. Previous literature has used different physiological 
predictors alone and in combination with other predictors to classify drivers’ cognitive 
load. These studies also explored a variety of machine learning methods including k-
nearest neighbors (kNN), artificial neural network (ANN), support vector machine 
(SVM), Naïve Bayes (NB), decision tree (DT), linear discriminant analysis (LDA), and 
logistic regression (see Chapter 4: Machine Learning Basics for an overview of these 
methods).  
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Solovey et al. [25] used heart rate (HR), galvanic skin response (GSR), and 
driving performance data from an instrumented vehicle study to classify whether drivers 
were performing a cognitive task or not. In this study, external cognitive load was 
imposed on the drivers through an auditory-verbal recall task, i.e., the n-back task, 
commonly used in working memory literature [34]. In particular, the task difficulty level 
used in classification was 2-back: participants were required to listen to several pre-
recorded series of single-digit numbers and respond verbally with the digit that was 
presented two positions previously or 2-back from the current number. The authors 
classified 2-back periods from periods with no secondary task using a variety of machine 
learning methods and a maximum classification accuracy of 89% was achieved with NB. 
In Wang et al. [22], a 32-channel EEG device was used for data collection in a driving 
simulator, and an SVM model with RBF kernel was built to identify whether the driver 
was performing a yes-no cognitive task (e.g., 24+15=37?). The authors achieved an 
accuracy of around 85% for classifying the cognitive task and no task periods using the 
power of four EEG bands: delta (1–3 Hz), theta (4–7 Hz), alpha (8–13 Hz), and low beta 
(14–20 Hz). Kohlmorgen et al. [23] had their participants drive on a highway in an 
instrumented vehicle and perform two cognitive tasks: counting down from a three-digit 
number by steps of 27, and listening to a book in the presence of another audio stream 
(news read). Through LDA on the power of four EEG bands (i.e., 3–15, 7–15, 10–15, 3–
10 Hz) obtained through a 32-channel EEG, the authors achieved classification 
accuracies of 91.8% and 95.6% in detecting whether the drivers were conducting either 
task, respectively, vs. not.  

 
1.3 Case Study: Cognitive Load Classification using Driver Physiological Data 

 
The studies cited above demonstrate the potential of physiological measures, especially 
the EEG signals, in detecting cognitive taskload experienced by drivers. However, 
although Wang et al. [22] and Kohlmorgen et al. [23] achieved high classification 
accuracies with EEG signals, they used research-grade EEG systems, which would be too 
invasive to be implemented in the vehicle. Recent advancements in technology have 
allowed for the development of less intrusive and much more affordable EEG systems, 
e.g., 4 channels collected wirelessly through a thin head band. Such a consumer-grade 
EEG headband has been shown to be reactive to changes in cognitive taskload 
experienced by drivers [35]. In this chapter, we present a case study classifying cognitive 
taskload experienced by drivers through the use of EEG signals from this consumer-grade 
EEG headband, along with HR and GSR measures. The data was obtained in a driving 
simulator study originally reported in He et al. [35], in which 33 participants completed a 
drive with no secondary task and two drives with cognitive secondary tasks: one with 
lower difficulty (1-back) and the other with higher difficulty (2-back). Different machine 
learning models were built to classify the task condition that was experienced by the 
drivers (i.e., no task, lower difficulty cognitive task, and higher difficulty cognitive task).  

Chapter 1 provided a brief overview of experimental design. Through this case 
study, we present an example for within-subjects experimental design. We then 
demonstrate the application of basic signal processing methods discussed in Chapter 3 
(e.g., Fast Fourier Transformation, digital filtering) to generate features from 
physiological data. Next, we use and compare supervised machine learning algorithms 
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(e.g., Artificial Neural Network, Support Vector Machines) introduced in Chapter 4 to 
classify drivers’ cognitive load as accurately as possible. 
 
1.3.1 Data Source 
 
Data was recorded in a driving simulator experiment that had a within-subject design. 
Each participant completed three drives, each with a different cognitive load condition: 
no-task (no external secondary task), lower difficulty cognitive task (1-back), and higher 
difficulty cognitive task (2-back). Each condition was completed by the participants in a 
separate drive with the order of the three drives counterbalanced across participants. 
Following sections present the experimental methodology, which is also described in 
detail in He et al. [35]. 
 
Participants  In total, 33 drivers (18 males and 15 females), recruited through campus 
and online posts, participated in this driving simulator study. Participants were required 
to drive at least several times per month, hold a full driver’s license (G license in Ontario, 
Canada or equivalent) for at least 3 years, and be under 35 years old (average age: 27.6; 
SD: 4.45). The compensation was C$12 per hour, and participants were told that they 
would receive a bonus of up to C$14 based on their driving and secondary task 
performance as motivation for engaging in the secondary task while not prioritizing it 
over the driving task.  
 
Apparatus  A NADS miniSimTM driving simulator was used in the experiment (Figure 
1). This fixed-base simulator has three 42-inch screens, creating a 130° horizontal and 
24° vertical field at a 48-inch viewing distance. The centre screen displays the left and 
centre parts of the windshield; the right screen displays the rest of the windshield, the 
rear-view mirror, and the right-side window and mirror, while the left screen displays the 
left-side window and mirror. EEG data was collected at 220 Hz using MuseTM by 
Interaxon (Figure 2a), a wireless consumer-grade headband with 2 dry sensors located at 
Fp1 and Fp2 positions (on the forehead) and two gel foam electrodes at TP9 and TP10 
positions (behind the ears), as shown in Figure 2b. The TP9 and TP10 positions were 
found to be unreliable due to oversensitivity to head movements, thus were excluded 
from our models. Heart rate was measured through Electrocardiography (ECG). Both 
ECG and GSR were collected using sensors by Becker Meditec that captures data at 240 
Hz using the D-Lab software developed by Ergoneers. Solid gel foam electrodes were 
used for the ECG (Figure 2c) and GSR sensors (Figure 2d). ECG was recorded with three 
electrodes placed on participant’s chest (Figure 2e). The GSR sensors were attached 
beneath the participant’s bare left foot with one sensor in the middle and the other under 
the heel (Figure 2e).  
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Figure 1. NADS miniSim Driving Simulator.  
 
 

  
 
(a) 
 

 
(b) 
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(c)     (d)             (e) 
 
Figure 2. Physiological sensors. (a) EEG headband. (b) Electrode positions for EEG. (c) 
ECG sensors. (c) GSR sensors. (d) Sensor placements on the participant. 
 
 
Experimental tasks A variety of secondary tasks can be used to generate different 
levels of cognitive load in an experimental setting, including, hands-free phone 
conversations [32], mental arithmetic [11], auditory-verbal navigation tasks [33], and the 
n-back task [30, 31]. We chose to use the n-back task given its widespread use in the 
working memory [34] and the driving literatures (e.g., [30]). In particular, we adopted a 
modified version of the n-back task; its validation is reported in He et al. [35] who 
showed that the 2-back version is more difficult than the 1-back version as expected. 
Participants listened to a pre-recorded series of 10 letters, separated by approximately 2.5 
second intervals, for an overall duration of approximately 25 seconds for each n-back 
task. For the 1-back task, participants were asked to count the number of times two 
identical letters appeared in pairs in a sequence (e.g., PP). For the 2-back task, 
participants were asked to count the number of times two identical letters appeared in 
pairs separated by one letter in between (e.g., DTD). Participants were asked to verbally 
respond with the total count of n-back instances at the end of each series.  

The driving scenarios required the participants to follow a lead vehicle at a speed 
of 40 mph (around 64.4 km/h) on a 4-lane urban road with light ambient traffic and some 
vehicles parked on the sides. The scenarios were designed to involve mainly operational 
driving decisions, with no or minimal strategic or tactical decisions, such as navigation or 
passing a vehicle. For the 1-back and 2-back drives, the participants were presented with 
two groups of n-back tasks, each on a straight section of the route. Each group consisted 
of three n-back tasks (a series of 10 letters each), totalling to six n-back tasks completed 
within each drive. A notification and a brief reminder of the task was provided to let the 
participant know that the n-back task was starting. In our machine learning models 
reported in the next section, we only used four out of the six n-back tasks completed 
within each drive, as the other two n-back tasks had lead vehicle braking events. The 
braking events were included as part of a separate research question explored in He et al. 
[35], that is, to assess driver response to unexpected events. In the n-back drives, the 
participants spent about 100 seconds performing the four n-back tasks. This 100-second 
period for each n-back drive and a corresponding 100 second period for the no-task drive 
were used in model building. 
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Procedures Participant eligibility was verified and consent form was signed upon 
arrival. Participants first went through a practice drive in the simulator, on a route 
identical to the one used in the experimental drives. They were then given written and 
oral instructions on the n-back task and practiced it without driving to ensure that they 
fully understood and were capable of doing the task, and then they practiced it while 
driving. After the preparation and training phase, participants completed the three 
experimental drives and were given a 5-minute break after each drive. At the end of the 
experiment, participants were briefed and received their payment.   

 
1.3.2 Machine Learning Models 
 
A variety of machine learning methods, including artificial neural network, k-nearest 
neighbors, support vector machine (SVM), Naïve Bayes, decision tree, and linear 
discriminant analysis algorithms were built to classify cognitive taskload (i.e., no task, 1-
back task or lower difficulty cognitive task, and 2-back task or higher difficulty cognitive 
task) using EEG, HR, and GSR data. The basics about these methods are presented in 
Chapter 4: Machine Learning Basics. A detailed introduction of EEG and its use in brain-
computer interfaces can be found in Chapter 6: Brain-Computer Interfacing with 
Interactive Systems. 
 
Signal processing and feature extraction An overview of our signal processing steps 
are presented in Figure 3. For more detailed procedures on signal processing, the reader is 
referred to Chapter 3: DSP Basics. 

EEG signals are typically analyzed through power of frequency bands (the 
amount of activity found in the signal within a particular frequency range, e.g., [22]) or 
the Event-Related Potential (ERP) (e.g., [36]). Although ERP has shown reactivity to 
external cognitive taskload, it is not suitable for cognitive load detection in real time in 
uncontrolled settings, given that it relies on a response to a specific stimulus (e.g., 
detection response task) that needs to be identified prior to measurement [37]. Therefore, 
the powers of different frequency bands were used as features in our classification.  

EEG signals were processed using the MuseLab Software provided by the device 
manufacturer. First, a notch filter at 60 Hz was used to reduce the influence of utility 
frequency in Canada. Following this filter, the power spectrum density (PSD), Sx(f), 
which describes the distribution of power into frequency components composing a signal, 
was calculated using Fast Fourier Transformation (FFT) method with a hamming window 
of 256 samples and overlap of 234 samples (1/10th of a second, 10 Hz, resulting in a 90% 
overlap between consecutive windows). The resulting resolution after applying FFT was 
0.86 Hz/bin ranging from 0 Hz to 110 Hz. Then, the power of five EEG bands (delta: 1-4 
Hz; theta: 4-8 Hz; alpha: 7.5-13 Hz; beta: 13-30 Hz; gamma: 30-44 Hz) for each channel 
(Fp1 and Fp2) was calculated using integration: 

 

 
 
where, P refers to the power of an EEG band; Sx(f) is the PSD of the EEG signal; and f1 
and f2 are the lower and upper range of the frequency range (e.g., 7.5 to 13 Hz for the alpha 
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band). Overall, there were 10 features extracted from EEG data: 2 positions × 5 bands per 
position.  

HR was calculated from ECG data using the MATLAB Signal Processing 
Toolbox; over consecutive 5-second periods, average HR was calculated. A smaller 
period for the calculation of average HR is less meaningful considering that the intervals 
between heartbeats are around 1 second. First, the raw ECG data was detrended using the 
POLYFIT function to remove potential artifacts in the signal due to body movement. Then, 
the function FINDPEAKS was used to identify R spikes of the signal. The intervals between 
the R spikes were used to calculate HR. 
 

 
(a) 

 
(b) 
 

 
(c) 
 
Figure 3. Processing of physiological signals. (a) EEG. (b) ECG. (c) GSR. 
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The average GSR was calculated every 0.1 second to match the sampling 
frequency of the EEG features. Overall, there was one feature each obtained from ECG 
and GSR. For each participant, there were 1000 data points per task condition (i.e., no 
task, lower difficulty cognitive task, and higher difficulty cognitive task), totalling to 
3000 data points per participant. Each data point had 12 features (10 EEG, 1 HR, and 1 
GSR). 

 
Data preparation for machine learning The dataset was split into two: 75% for 
training and 25% for test. However, given that consecutive physiological data points are 
highly correlated [23], the split was not random. For each drive, the first 75 seconds of 
the 100 second data period of interest was assigned to the training set and the remaining 
25 seconds was assigned to the test set, as shown in Figure 4. 
 

 
Figure 4. Illustration of the training and the test datasets. 
 

Differences among drivers have been shown to impact the accuracy of driver state 
classification based on physiological data [38]. In order to minimize the effect of 
individual differences, each participants’ data was normalized with respect to their no-
task responses in the training dataset. We used only the training dataset as the reference 
given that in a real-world application, the training dataset would be available whereas the 
test dataset would represent future values not yet observed. The normalized feature 
values were calculated using the following equation for each participant. 
 

𝑋!"#$% =	
&!"#'&$%	'"()

($%	'"()
    

 
where 𝑋!"#$% is the normalized feature score, 𝑋$)* 	is the raw feature value, 𝑋+#	-)!. 	and 
𝑆+#	-)!. are the mean and the standard deviation of the feature for the no task condition in 
the training dataset of the participant.  
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 Further, given that some classification algorithms, such as kNN [39], are sensitive 
to scale differences across features, the scales were also standardized across features 
using the training dataset, as shown in the equation below. The reason for using the 
training dataset here as well, was the same as for normalization.   
 

𝑋!")/%0 =	
&(*%!+'&'!",$,$-

('!",$,$-
      

 
where 𝑋!")/%0 is the standardized feature score; 𝑋!"#$% is the normalized feature score; 
𝑋-$)1+1+2	and 𝑆-$)1+1+2 are the mean and the standard deviation of the feature for the 
training dataset.  
 
Model Building We utilized six widely-used supervised learning models: kNN, 
ANN, SVM, NB, decision tree, and LDA. All models were built in MATLAB using the 
Statistics and Machine Learning Toolbox, except for the SVM classifier. For the multi-
class SVM algorithm, the LIBSVM Toolbox was used [40]. For model fit, a 3-fold cross 
validation was performed for each model. Overall, each type of machine learning model 
was built twice, once for normalized data and once for non-normalized data, in order to 
investigate whether normalizing physiological data as suggested by Lin et al. [38] would 
result in a prediction accuracy boost. Overall, 12 models were fitted. Table 2 summarizes 
the models, their associated parameters, the values explored in model fitting, and the 
software used.  
 
Table 2 Summarization of Models and Parameters 
 
Models Details 
kNN Function: FITKNN in MATLAB 

Euclidian distance with equal weights 
Number of neighbors: k = 1, 2, 4, 8, 16#, 32*, 64 

ANN Function: PATTERNNET in MATLAB 
Feedforward neural network 
Learning rate: 0.001 
Architecture (Hidden layers-nodes): 1-16, 1-32, 1-64, 1-128 
                                                2-16, 2-32*, 2-64, 2-128 
                                                3-16, 3-32, 3-64#, 3-128 

SVM Function: LIBSVM Toolbox in MATLAB 
Kernel: radial basis function*#, sigmoid 

NB Function: FITCNB in MATLAB 
Prior probabilities: 1/3 for each class 

Decision tree Function: FITCTREE in MATLAB 
LDA Function: FITCDISCR in MATLAB 

* denotes best parameters for normalized data; # denotes best parameters for non-normalized data 
 
 

For kNN, the MATLAB function FITKNN was used to build the classifier; different 
k-values (number of neighbors) were explored, and k=32 and k=16 were found to provide 
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the best classification accuracy for normalized and non-normalized data, respectively. For 
ANN, a feedforward neural network was built using the MATLAB function PATTERNNET, 
with cross entropy as the loss function. For hidden layers, the activation function TANSIG 
was used, while a SOFTMAX function was used for the output layer. We examined different 
ANN architectures: 1, 2, and 3 hidden layers, with the number of neurons in each layer 
ranging from 2 to 128. The best performance was obtained with two hidden layers with 
32-neurons for normalized data, and with three hidden layers with 64-neurons for non-
normalized data. A learning rate of 0.001 was implemented for both normalized and non-
normalized data. 

As mentioned before, a third-party MATLAB toolbox was used for SVM. The 
radial basis function (RBF) and sigmoid kernels were compared, and the RBF kernel was 
found to lead to better accuracy for both normalized and non-normalized data. For NB, 
the MATLAB function FITCNB was used, with flat prior probabilities for the three task 
conditions (1/3) given that we had a balanced dataset across task conditions (or classes). 
For the decision tree, the MATLAB function FITCTREE was used. Pruning was used to 
prevent overfitting. Given that LDA has a closed-form solution, it does not require 
hyperparameters to be tuned in cross-validation. The MATLAB function FITCDISCR was 
used for LDA with a “linear” discriminant type. 
 
Results Figure 5 presents the classification accuracy for the different models both 
for normalized and non-normalized data. Overall, models performed much better with 
normalized data, and SVM provided the best accuracy of 79.4% in classifying the three 
cognitive states. ANN and kNN also performed well at 75.8% accuracy. Confusion 
matrices were also generated for the models built on the normalized data (Table 2). 
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Figure 5. Classification accuracy (three classes: no task, lower difficulty cognitive task, 
and higher difficulty cognitive task) with and without normalization based on 
participants’ no task data. 
 
Table 2. Confusion matrices for the six machine learning models that used normalization.  
 

 kNN Predicted  ANN Predicted 

  no task 1-back 2-back  
 no task 1-back 2-back 

Ta
rg

et
 no task 81.3% 14.8% 3.9%   no task 69.7% 25.6% 4.7% 

1-back 25.4% 67.2% 7.4%   1-back 19.9% 74.7% 5.5% 

2-back 7.0% 14.2% 78.8%   2-back 0.9% 16.2% 82.9% 

 

                 

 SVM Predicted   NB Predicted 

  no task 1-back 2-back    no task 1-back 2-back 

Ta
rg

et
 no task 80.1% 13.9% 6.0%   no task 80.1% 14.3% 5.6% 

1-back 24.4% 71.0% 4.6%   1-back 34.5% 56.7% 8.8% 

2-back 2.0% 10.9% 87.1%   2-back 3.6% 44.6% 51.8% 

 

                 

 Decision 
Tree 

Predicted   LDA 
  

Predicted 

 no task 1-back 2-back  no task 1-back 2-back 

Ta
rg

et
 no task 53.1% 38.6% 8.3%   no task 76.3% 18.2% 5.5% 

1-back 19.2% 69.6% 11.1%   1-back 36.3% 42.4% 21.2% 

2-back 3.4% 4.6% 92.0%   2-back 40.2% 19.9% 39.9% 
 
Discussion and Practical Implications The modeling results revealed that SVM 
provided the highest classification accuracy (79.4%), followed by ANN (75.8%) and 
kNN (75.8%). Earlier studies that also used physiological predictors to classify drivers’ 
cognitive taskload reported classification accuracies of 85-96% [22, 23, 25]; however, 
these earlier studies only focused on two-class problems, i.e., they only tried to 
distinguish between whether the driver was conducting a secondary task or not. In 
contrast, we classified driver taskload into three classes: no task, lower difficulty 
cognitive task (1-back), and higher difficulty cognitive task (2-back). From our confusion 
matrices, it can be observed that most models reached high classification accuracies for 
the no-task category. It is not surprising that detecting the mere existence of a secondary 
task would be an easier classification problem than detecting the existence and also the 
level of taskload. Further, the cognitive tasks that were used in some of these earlier 
studies appear to be more difficult than our task levels, which also makes the 
classification problem easier. For example, Solovey et al. [25] classified no-task from the 
2-back task (our higher difficulty task level) and Kohlmorgen et al. [23] had their 
participants count down from a three-digit number by steps of 27. Overall, for these 
reasons, the accuracy level reached with the SVM model is promising for our 
classification problem. Systems that intervene (e.g., blocking incoming phone calls) when 
high levels of taskload is detected should be able to not only detect the existence of a 
secondary task but to distinguish between low and high levels of taskload. Interventions 
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during low taskload can result in nuisance alarms, which would in turn influence the 
drivers’ system acceptance and use [41, 42].  

As stated earlier, we built our models both on normalized and non-normalized 
data. Differences among drivers have been shown to impact the accuracy of driver state 
classification based on physiological data [38] and normalization has been suggested as a 
strategy to mitigate the effects of these differences. Our models showed that 
normalization does significantly enhance model accuracy; there was an increase of 26.5% 
in the SVM classification accuracy with normalization. Each participants’ data was 
normalized with respect to their no-task responses in the training dataset. We used only 
the training dataset as the reference given that in a real-world application, the training 
dataset would be available whereas the test dataset would represent future values not yet 
observed. However, this normalization strategy requires the system to have prior data 
from the driver, or learn from the driver over time. We had a limited sample size of 33 
people; it is possible that a model built on a much larger sample would make the 
normalization and hence learning from an individual driver less important.  

 
1.4 Conclusion 

 
We presented a case study demonstrating the usefulness of physiological signals in 
classifying different cognitive taskload levels experienced by drivers. In this case study, 
we explored a number of commonly used machine learning models, but the reader should 
be informed that there are other models, such as Hidden Markov [43] and Semi-Markov 
Models [44] and Recurrent Neural Networks [45], that are specifically built to capture 
state transitions. These models may perform better than the ones employed in this case 
study. Further, although excessive levels of cognitive load experienced by drivers is an 
important concern for traffic safety, there are other types of demands (e.g., visual tasks 
such as texting on a cell phone) that are also of concern and the prediction of these 
different demand types is an area of active research (e.g., [24, 46-48]). Detecting the 
demands experienced by drivers in real-time can be used to inform the behavior of 
adaptive interfaces [e.g., 49].  
 
1.5 Further Reading  
 
The reader is referred to the following body of literature for further readings: [12, 50] for 
cognitive load; [51] for general augmented cognition applications in human-computer 
interaction; and [19, 52] for driver state measures.  
 
1.6 Follow-up Questions 
 
While the authors are unable to provide the data used in this case study, there are a 
number of public EEG datasets, some at: https://github.com/meagmohit/EEG-Datasets. 
The reader is encouraged to explore these EEG datasets and practice the machine 
learning models and EEG data processing methods presented in this chapter and 
elsewhere in this book. We also provide some questions/suggestions below to guide your 
exploration: 
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• As has been discussed, the power of the frequency band is one feature we can 
elicit from EEG data, what other EEG features can be used to assess human 
operator state? 

• EEG data is sensitive to artifacts such as eye blinks. The data that we used in this 
chapter was pre-processed by the data collecting software, so we did not need to 
manually filter artifacts. Practice design filters to remove eye blinks from the 
EEG data. 

• Eye blinks can be indicator of workload. Thus, eye blinks can be considered an 
artifact but also a potentially useful feature of EEG data. Can you design 
algorithms to identify and capture the rate of eye blinks from EEG data? 

• The machine learning models we explored in this chapter do not capture the 
temporal nature of the data. Are there other types of models that can leverage the 
temporal information for driver state detection? How would you implement them 
to a dataset that is similar to the one we present?  
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