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Abstract- While broad metric classes have been proposed in the 

literature to facilitate metric selection for evaluating human-
unmanned vehicle (UV) interaction, there still lacks a systematic 
method for selecting an efficient set of metrics from the many metrics 
available. Through an experiment with subject matter experts, we 
investigated which metric characteristics human factors practitioners 
consider to be important in evaluating human supervisory control of 
UVs. We tested two different multi-criteria decision making methods 
to help practitioners assign subjective weights to metric evaluation 
cost/benefit criteria. The majority of participants rated the metric 
evaluation criteria used for both tools as very useful. However, the 
majority of participants’ metric selections before using the methods 
were the same as the suggestions provided by the methods. Since 
determining weights of cost/benefit importance is an inherently 
subjective process, the real value of using even objective 
computational tools may be reminding human factors practitioners of 
the important experimental criteria and relationships between these 
criteria that should be considered when designing an experiment. 

 
Index Terms—Metrics, metric quality, human supervisory control, 

AHP, human factors, measurement techniques, and experiments 
 

1. INTRODUCTION 
 
Human-automation teams are common in many 

domains, such as command and control operations, human-
robot interaction, process control, and medicine. With high 
levels of automation, these teams operate under a 
supervisory control paradigm. Supervisory control occurs 
when one or more human operators intermittently program 
and receive information from a computer that then closes 
an autonomous control loop through actuators and sensors 
[1]. Operation of unmanned vehicles (UVs) is one 
particular domain where humans are increasingly placed in 
a supervisory role. The role of the human operator has 
changed from attending to low-level tasks (e.g., manually 
flying an aircraft) to higher-level tasks such as monitoring 
and generating contingency courses of action. 

A popular metric used to evaluate human-automation 
performance in supervisory control is mission effectiveness 
[2, 3]. Mission effectiveness focuses on performance as it 
relates to the final output produced by the human-
automation team, or the human-UV team in the context of 
UV operations. However, this metric fails to provide 
insights into the process that leads to the final mission-

related output. Measuring multiple human-automation 
team aspects, such as workload and usability can be 
valuable in diagnosing performance successes and failures, 
and in identifying effective training and design 
interventions. However, choosing an efficient set of 
metrics for a given experiment still remains a challenge, 
whether the experiment is intended to compare different 
conditions in a laboratory setting or to evaluate the system 
performance against some objective for more real-world 
applications.  

Many practitioners select their metrics based on past 
experience. Another approach to metric selection is to 
collect as many measures as possible to supposedly gain a 
comprehensive understanding of the human-automation 
performance. These methods can lead to insufficient 
metrics, expensive experimentation and analysis, and the 
possibility of inflated type I errors. There appears to be a 
lack of a principled approach to evaluate and select an 
efficient set of metrics among the large number of 
available metrics. 

Although metric selection issues apply broadly to 
human performance research questions, this research 
focuses specifically on human supervision of UVs to 
identify the “quality” of common/applicable metrics, and 
explore the usefulness of generic multi criteria decision 
making methods for UV metric selection.  

In this paper, we first summarize earlier efforts on the 
development of metric evaluation criteria based on a 
comprehensive review of metrics applicable to human 
supervision of UVs. We then present an experiment 
conducted with human factors practitioners to explore the 
usefulness of two existing multi criteria decision making 
methods designed to assist practitioners in the metric 
selection process using the evaluation criteria. We also 
report subject matter expert opinions on the usefulness of 
the proposed metric evaluation criteria. We conclude with 
recommendations for future applications. 

 
2. METRIC EVALUATION CRITERIA 

 
Different frameworks of metric classes are found in the 

literature in terms of human-UV interaction [4-7]. These 
frameworks categorize existing metrics into high-level 
metric classes that assess different aspects of the human-
automation performance and are generalizable across 
missions. Pina et al. [5] defined five generalizable metric 
classes for supervisory control of UVs: mission 
effectiveness, automation behavior efficiency, human 
behavior efficiency, human behavior precursors, and 
collaborative metrics. These metric classes can help 
experimenters select metrics that result in a comprehensive 
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understanding of the human-UV performance, covering 
issues ranging from automation capabilities to human 
cognitive abilities. For holistic system assessment, a rule of 
thumb is to select at least one metric from each metric 
class. However, there is a lack of a systematic 
methodology to select a collection of metrics across these 
classes. Each metric set has advantages, limitations, and 
costs, thus the added value of different metric sets for a 
given context needs to be assessed in order to select an 
efficient set that maximizes value and minimizes cost.  

Donmez, Pina, and Cummings [8] proposed a list of 
metric evaluation criteria for human supervisory control of 
UVs: experimental constraints, comprehensive 
understanding, construct validity, statistical efficiency, and 
measurement technique efficiency. This list was identified 
through a comprehensive literature review of different 
metrics and measuring techniques applicable to UV 
supervisory control [9]. The following section briefly 
presents these criteria. Detailed discussions and UV 
supervisory control metric examples can be found in [8, 
10].  

It should be noted that the costs and benefits of different 
research techniques in human engineering have been 
previously discussed in the literature [11, 12]. For example, 
Bethel and Murphy [13] present a useful discussion on the 
advantages and disadvantages of methods that can be 
utilized specifically to evaluate human-robot interaction. 
However, the dimension they use in their discussion is data 
collection method (e.g., self assessment, interviews, etc.) 
rather than metric quality. Our list of metric evaluation 
criteria focuses specifically on metric quality and 
inherently encompasses information on different data 
collection methods. 
 
2.1 Experimental Constraints 
 

Time and monetary cost associated with measuring and 
analyzing a specific metric constitute the main practical 
considerations for metric selection. Availability of 
temporal and monetary resources depends on the 
individual project and such factors are typically limiting in 
all projects. The stage of system development and the 
testing environment are additional constraints that can 
guide metric selection. For example, responses to rare 
events are more applicable for research conducted in 
simulated environments, whereas observational measures 
can provide better value in field testing. In general, early 
phases of system development require more controlled 
experimentation in order to evaluate theoretical concepts 
that can guide system design. Later phases of system 
development require a less controlled evaluation of the 
system in actual operation. 
 
2.2 Comprehensive Understanding 
 

It is important to maximize the understanding gained 
from a research study. Given that it is often not possible to 
collect all required metrics, each metric should be 

evaluated based on how much it explains the phenomenon 
of interest or its coverage. For example, continuous 
measures of workload over time (e.g., pupil dilation) can 
provide a more comprehensive dynamic understanding of 
one aspect of a system compared to static, aggregate 
workload measures collected at the end of an experiment 
(e.g., subjective responses).  

The most important aspect of a study is finding an 
answer to the primary research or evaluation question. The 
proximity of a metric to answering this question defines 
the importance of that metric. For example, a workload 
measure may not tell much without a metric to assess 
mission effectiveness, which is what the system designers 
are generally most interested in understanding. Another 
characteristic of a metric that is important to consider is the 
amount of additional understanding gained using a specific 
metric when a set of metrics are collected. For example, a 
workload measure can provide additional insights beyond 
just human-UV performance. 

In addition to providing additional understanding, 
another desired metric quality is its causal relations with 
other metrics. A better understanding can be gained if a 
metric can help explain other metrics’ outcomes. For 
example, the underlying reasons for an operator’s behavior 
and the final outcome of an event can be better understood 
if the initial conditions and operator’s state when the event 
occurs are also measured. When used as covariates in 
statistical analysis, the initial conditions of the environment 
and the operator can help explain the variability in other 
metrics of interest. Thus, in addition to human behavior, 
experimenters are encouraged to measure human behavior 
precursors [5] in order to assess the operator state and 
environmental conditions, which may influence human 
behavior. 

 
2.3 Construct Validity 
 

Construct validity refers to how well the associated 
measure captures the metric or construct of interest. For 
example, subjective measures of situational awareness ask 
participants to rate the amount of situational awareness 
they had on a given scenario or task. These measures are 
proposed to help in understanding participants’ situational 
awareness [14, 15]. However, self-ratings assess meta-
comprehension rather than comprehension of the situation: 
it is unclear whether operators are aware of their lack of 
situational awareness.  

Good construct validity requires a measure to have high 
sensitivity to changes in the targeted construct. That is, the 
measure should reflect the change as the construct moves 
from low to high levels [16]. For example, primary task 
performance generally starts to break down when the 
workload reaches higher levels [16, 17], thus primary task 
performance measures are not sensitive to changes at lower 
workload levels. 

A measure with high construct validity should also be 
able to discriminate between similar constructs. An 
example measure that fails to discriminate two related 
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metrics is galvanic skin response, which has been proposed 
and used to measure workload and stress levels (e.g., [18]). 
However, even if workload and stress are related, they are 
still two separate metrics. Therefore, galvanic skin 
response alone cannot suggest a change in workload. 

Good construct validity also requires the selected 
measure to have high inter- and intra-subject reliability. 
Inter-subject reliability requires the measure to assess the 
same construct for every participant, whereas intra-subject 
reliability requires the measure to assess the same construct 
if the measure were repeatedly collected from the same 
participant under identical conditions. For example, self-
ratings are widely utilized for mental workload assessment 
[19, 20]. However, different individuals may have different 
interpretations of workload, leading to decreased inter-
subject reliability. Some participants may not be able to 
separate mental workload from physical workload [21], 
and some participants may report their peak workload, 
whereas others may report their average workload. 
Participants may also have recall problems if the subjective 
ratings are collected at the end of a test period, raising 
concerns on the intra-subject reliability of subjective 
measures. 

 
2.4 Statistical Efficiency 
 

Three metric qualities should be considered to ensure 
statistical efficiency: total number of measures collected, 
frequency of observations, and effect size. 

Analyzing multiple measures inflates type I error. That 
is, as more dependent variables are analyzed, finding a 
significant effect when there is none becomes more likely. 
The inflation of type I error due to multiple dependent 
variables can be handled with multivariate analysis 
techniques, such as Multivariate Analysis of Variance 
(MANOVA) [22]. However, it should be noted that 
multivariate analyses are harder to conduct, as researchers 
are more prone to include irrelevant variables in 
multivariate analyses, possibly hiding the few significant 
differences among many insignificant ones. The best way 
to avoid failure to identify significant differences is to 
design an effective experiment with the most parsimonious 
metric/measure set that specifically addresses the research 
question [23].  

Another metric characteristic that needs to be 
considered is the frequency of observations required for 
statistical analysis. Supervisory control applications require 
humans to be monitors of automated systems, with 
intermittent interaction, thus human monitoring efficiency 
is an important metric to measure. The problem with 
assessing monitoring efficiency is that, in most domains, 
errors or critical signals are rare, and operators can have an 
entire career without encountering them. For that reason, in 
order to have a realistic experiment, such rare events 
cannot be included in a study with sufficient frequency. 
Therefore, if a metric requires response to rare events, 
observed events with a low frequency of occurrence cannot 
be statistically analyzed unless data is obtained from a very 

large number of participants, such as in medical studies on 
rare diseases.  

The number of participants that can be recruited for a 
study is especially limited when participants are domain 
experts such as pilots. The power to identify a significant 
difference, when there is one, depends on the differences in 
the means of factor levels and the standard errors of these 
means, which constitute the effect size. One way to 
compensate for limited number of participants in a study is 
to use more sensitive measures that will provide a large 
separation between different conditions, that is, a high 
effect size.  

 
2.5 Measurement Technique Efficiency 
 

The data collection technique associated with a specific 
metric should not be intrusive to the participants or to the 
nature of the task. For example, eye trackers can be used 
for capturing operators’ visual attention (e.g., [24, 25]). 
However, head-mounted eye trackers can be 
uncomfortable for participants, and hence influence their 
responses. Wearing an eye-tracker can also lead to an 
unrealistic situation that is not representative of real world 
tasks. Thus, the measurement technique can interfere with 
the construct validity of a metric.  

The measuring technique can also interfere with the 
realism of the study. For example, off-line query methods 
are used to measure operators’ situational awareness [26], 
by briefly halting the experiment at randomly selected 
intervals, blanking the displays, and administering a 
battery of queries to the operators. The collection of the 
measure requires the interruption of the task in a way that 
is unrepresentative of real operating conditions. The 
interruption may also interfere with other metrics such as 
operator’s performance and workload, as well as other 
temporal-based metrics. 

 
3. MULTI CRITERIA DECISION MAKING METHODS 

FOR METRIC SELECTION 
 

Donmez, Pina, and Cummings [8] translated the above 
criteria into potential cost-benefit parameters (Table 1), 
which can be used to define cost and benefit functions of a 
metric set, Eqn. (1). Some criteria can be considered as a 
benefit or a cost (e.g., non-intrusiveness vs. intrusiveness). 
Thus, the breakdown in Table 1 was based on the ability to 
assign a monetary cost to an item. 

 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐼𝐼 = ∑ 𝑊𝑊𝑊𝑊𝑖𝑖  × 𝑀𝑀𝑀𝑀𝐼𝐼𝐼𝐼𝑁𝑁𝑁𝑁

𝑖𝑖=1   where 
𝑊𝑊𝑊𝑊𝑖𝑖 : weight of importance for benefit criterion i 
𝑀𝑀𝑀𝑀𝐼𝐼𝐼𝐼 : how well metric I meets benefit criterion i  
𝑁𝑁𝑁𝑁: total number of benefit criteria 

     (1) 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐼𝐼 =  ∑ 𝑊𝑊𝑊𝑊𝑗𝑗  × 𝑀𝑀𝑀𝑀𝐼𝐼𝐼𝐼𝑁𝑁𝑁𝑁

𝑗𝑗=1    where 
𝑊𝑊𝑊𝑊𝑗𝑗 : weight of importance for cost criterion j 
𝑀𝑀𝑀𝑀𝐼𝐼𝐼𝐼 : how much metric I costs for cost criterion j 
𝑁𝑁𝑁𝑁: total number of cost criteria  
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Table 1: An example breakdown of cost-benefit parameters for metric selection 

COSTS 

Data Gathering 

Preparation Time to setup 
Expertise required 

Data Collection 
Equipment 
Time 
Measurement error likelihood 

Subject Recruitment 
Compensation 
Institutional Review Board preparation and submission 
Time spent recruiting subjects 

Data Analysis 

Data Storage/Transfer Equipment 
Time 

Data Reduction 
Time 
Expertise required 
Software 

Statistical Analysis 

Error proneness given the required expertise 
Time 
Software 
Expertise 

BENEFITS 

Comprehensive Understanding 
Proximity to primary research question 
Coverage – Additional understanding given other metrics 
Causal relations to other metrics 

Construct Validity 

Sensitivity 
Power to discriminate between similar constructs 
Inter-subject reliability 
Intra-subject reliability 

Statistical Efficiency 
Effect Size Difference in means 

Error variance 
Frequency of observations 
Total number of measures collected 

Measurement Technique Efficiency Non-intrusiveness to subjects 
Non-intrusiveness to task nature 

Appropriateness for system development phase / testing environment 
 
 
Depending on research objectives and limitations, the 

entries in the cost and benefit functions can have different 
weights of importance (i.e., WBi and WCj). Two promising 
techniques identified to help researchers assign subjective 
weights are the pair-wise comparison approach of the 
analytic hierarchy process (AHP) [27], and the ranking 
approach of the probability and ranking input matrix 
(PRIM) method [28]. Direct assignment of weights is not 
adopted as an alternative since humans have difficulty with 
absolute judgment and are better at making relative 
judgments [12].  

AHP is widely used both in academic research and in 
the industry. It begins with the user building a decision 
hierarchy, which includes the goals (e.g., identify metric 
benefits), decision alternatives (e.g., NASA TLX, pupil 
dilation), and criteria (e.g., non-intrusiveness, construct 
validity). There are no systematic guidelines for creating 
the hierarchy or identifying the decision alternatives and 
criteria. The hierarchies depend on user knowledge and 
experience.  

At each level of a hierarchy, AHP utilizes pair-wise 
comparisons to express the relative importance of one 
criterion over another (e.g., Fig. 1). The relative 

importance is judged on a five point Likert scale with the 
end values of equally important and extremely more 
important. The values obtained from pair-wise 
comparisons are then used to create a weight matrix. The 
eigenvectors of this weight matrix correspond to the 
criteria weights of interest. There are disadvantages 
associated with AHP identified in the literature suggesting 
flaws in the methods of combining individual weights into 
composite weights [29, 30].  

Another characteristic of AHP, potentially a user 
acceptance issue, is the consistency checks that are 
imposed on the user. AHP forces the user to perform all 
possible pairwise comparisons even if some of these 
comparisons are redundant. For example, if the user is 
comparing A, B, and C, then a comparison between A and 
B and a comparison between B and C would indicate how 
A and C would compare. Even if a comparison of A and C 
is redundant, AHP forces the user to perform it until a 
consistency criterion is met (consistency ratio ≤ 0.1 as 
suggested by Saaty [31]), with the claim that consistency 
checks help the user think about his ratings in detail. The 
consistency ratio criterion of 0.1 is an arbitrary cutoff but 
is the convention.  
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Fig. 1. Interface for Analytic Hierarchy Process (AHP) used in the metric selection experiment (Section 4). 
 

 
The consistency ratio takes into account not only the 

directionality of the responses but also the magnitude. For 
example, when comparing A, B, and C, if the user 
indicates that both A and B are moderately more important 
than C, then he has to indicate that A and B are equally 
important. Rating A to be even slightly more important 
than B (or vice versa) would lead to a consistency ratio of 
0.19 and would be considered incorrect by AHP. Thus, 
AHP does not always allow for finer grain comparisons.  

The ranking input matrix (RIM) is similar to more 
traditional engineering decision matrices such as the ones 
used in quality function deployment [32]. The RIM method 
allows people to categorically select weights through a 
direct perception-interaction interface (e.g., Fig. 2) [28]. 
Each item is represented by a puck that can slide (through 
clicking and dragging) onto a ranking matrix.  

The ranking matrix consists of 10 slots consisting of 
five main categories of importance: high, medium-high, 
medium, low-medium, and low. Each of these main 
categories has two bins to allow the person to indicate 
slight variations in the importance of items. The pucks can 
also be placed side by side indicating equal importance. A 
numeric weight value is assigned to these bins on a scale of 
0.05 to 0.95 with 0.10 intervals.  

AHP creates hierarchies and only the entries in one 
level of a hierarchy are directly compared by the user. In 
contrast, RIM allows the users to see the weights in each 
category side by side, and manipulate them if necessary. In 
general, AHP is not as transparent and thus may be harder 
for the decision makers to understand. Moreover, the 
inability to directly compare subcategories in a hierarchy 
can generate unexpected results.  

In addition to requiring subjective weights of 
importance, the cost and benefit functions (1) also require 
values representing how well each metric meets the 

evaluation criteria (i.e., MBIi and MCIj). In some cases, the 
value of a metric can be represented with an objective 
number (e.g., time required to collect a metric). However 
for many criteria, finding an objective value is impossible 
(e.g., construct validity of a metric).  

In addition to determining WBi and WCj, AHP and RIM 
can also be used to determine subjective values for MBIi 
and MCIj. In application, a user would conduct either 
pairwise comparisons (for AHP) or rankings (for RIM). 
The methods then would generate values for weights of 
importance for the evaluation criteria (WBi and WCj) and 
how well each metric meets each criterion (MBIi and MCIj). 
The user would then be presented with cost and benefit 
values calculated via Eqn. (1) or a combination of them 
(e.g., difference or ratio of cost and benefit values).  

Both AHP and RIM are intended to help decision 
makers select a choice out of many. However, when trying 
to answer a research question, researchers will most likely 
need more than one metric. When selecting multiple 
metrics, the benefits and costs for multiple metrics will 
need to be combined. Moreover, the dependencies between 
the selected metrics will also need to be incorporated into 
the combined benefit-cost. For example, the total number 
of metrics selected would have an influence on the type I 
error of each individual metric.  

The linear combination of benefit-cost values facilitates 
both the combination of multiple metric costs and benefits, 
as well as the incorporation of metric dependencies by 
allowing additional terms to be added or subtracted from 
the overall value. Therefore, in the experiment described in 
the next section, we used the difference of benefit and cost 
values to rank the metrics, but also presented the 
corresponding benefit and cost values to the participants. 
Another approach is to mimic how humans would combine 
these cost-benefit values. 
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Fig. 2. Interface for Ranking Input Matrix (RIM) used in the metric selection experiment (Section 4). 

 
 
Our current approach may not be optimal, however, the 

best method, if one exists, is currently unknown and is an 
area for future research. However, given that selection of 
multiple metrics is more realistic than selecting a single 
metric, it is important to facilitate the incorporation of 
metric dependencies when combining benefit and cost 
values. It is also important to assess if people can account 
for metric dependencies (e.g., statistical implications of 
collecting multiple metrics) when they evaluate metrics 
against a set of criteria. The latter issue was investigated as 
part of a larger experiment conducted to evaluate AHP and 
RIM methods for metric selection. 
 

4. METRIC SELECTION EXPERIMENT 
 

An experiment was conducted to a) investigate the 
perceived usefulness of the metric evaluation criteria, b) 

identify which criteria human factors researchers consider 
to be important, and c) evaluate AHP and RIM for 
supporting metric selection. Although we had some 
expectations based on the characteristics of AHP and RIM 
(e.g., time to complete AHP would be much longer), we 
did not set any directional hypothesis prior to this 
experiment. We wanted to assess the insights of subject 
matter experts on the evaluation criteria as well as potential 
usefulness of AHP and RIM in metric selection.  

Thirty-one human factors practitioners were presented 
with the description of a hypothetical UV supervisory 
control experiment, which was adapted from an actual 
experiment conducted by Donmez, Cummings, and 
Graham [33]. The participants were then asked to select 
either one or multiple workload metrics for this 
hypothetical experiment from a list of potential workload 
metrics provided to them. After making an initial selection, 
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the participants used both AHP and RIM (order 
counterbalanced) to evaluate the list of workload metrics. 
After AHP and RIM solutions were displayed, the 
participants were given the choice to change their initial 
metric selection. They could keep their initial selection, 
pick AHP or RIM solutions, or come up with an entirely 
different selection. At the end of the experiment, the 
participants filled out a questionnaire, evaluating AHP and 
RIM on a multitude of characteristics.   

In order to prevent experimental confounds, we focused 
only on workload metrics. Workload is a common human 
factors metric that most human factors practitioners 
understand [34, 35], and is a common metric gathered 
across human-UV studies. Participants were not allowed to 
select a workload metric that was not on the list provided 
to them. Keeping the experiment bounded allowed for a 
shorter experiment and more control on the experimental 
conditions, hence a better ability to draw conclusions.  

 
4.1 Participants 
 

A total of 31 participants completed the study, and all 
had experience with human subject experimentation and 
metrics. Experience with human subject experimentation 
ranged from one month to forty years. Participants were 
recruited from both academia and industry, and consisted 
of 9 females and 21 males, ages ranging from 19 to 64 
years (average: 36.6, stdev: 13.6). Eleven of the 
participants currently held an academic position. The 
highest degrees held included high school (n=1), college 
(n=12, 5 in academia and 7 in industry), Master’s (n=12, 4 
in academia and 8 in industry), and Ph.D. (n=6, 2 in 
academia and 4 in industry). The experiment took 1 to 1.5 
hours to complete. 

 
4.2 Apparatus 
 

The experiments were conducted in a mobile 
experimental test-bed mounted in a 2006 Dodge Sprinter. 
Two 21-inch wall mounted displays were used in the 
experiment. By integrating an experimental test bed into a 
vehicle, the experiment was able to travel to the 
participants. Access restrictions into government facilities, 
particularly with foreign graduate students, often make it 
difficult to take such experiments directly into the work 
place. Thus, the use of the vehicle allowed a high number 
of human factors practitioners to be recruited for 
participation.  

 
4.3 Experimental Design 
 

The experiment was a 2x2 mixed factorial design with 
two independent variables: number of metrics to select (a 
single metric, a subset of all metrics) and weight 
assignment method (AHP, RIM). Number of metrics to 
select was a between-subjects variable, with 15 participants 
selecting a single metric out of all the candidate metrics, 
and another 16 selecting a subset of all the metrics (one, 

two, or all). Weight assignment technique was a within-
subjects variable with each participant making a decision 
using both AHP and RIM. In order to control for learning 
effects, the order of presentation was counterbalanced.  

 
4.4 Experimental Tasks 
 

The experimental instructions started with the 
description of the hypothetical experiment and the list of 
potential workload metrics to choose from: embedded 
secondary task performance, NASA TLX, and pupil 
dilation based on eye tracking data. The hypothetical 
experiment assessed the effects of different auditory alerts 
on human supervision of multiple unmanned aerial 
vehicles. When participants finished reading this part of 
the instructions, they were asked to select either one or a 
subset of workload metrics depending on the experimental 
condition they were assigned (i.e., number of metrics to 
select). 

After the initial metric selection, participants read a 
detailed description of the metric evaluation criteria. A 
subset of the criteria identified in Donmez, Pina, and 
Cummings [8] was selected to be included in this 
experiment. The selection was based on the relevance to 
the metrics used in the hypothetical experiment. The cost 
estimates were provided where applicable. There were no 
explicit monetary or time constraints imposed on the 
experiment. To have more experimental control, we did not 
ask the participants to define a hierarchy structure for AHP 
but provided the structure below.  

 
Benefits:  
• Coverage 
• Construct validity:  

a) discrimination power 
b) sensitivity 
c) inter/intra subject reliability 
d) non-intrusiveness 

• Type I error (for multiple metric selection) 
 
Costs: 
• Data gathering:  

a) time for data collection  
b) monetary cost for data collection 
c) measurement error likelihood 

• Data analysis:  
a) time for analysis 
b) expertise for analysis 

 
The instructions included a detailed description of AHP 

and RIM, including how the benefit-cost values were 
calculated. After reading about the first method (AHP or 
RIM) the participants used an interface for that method. 
With this interface, the participants assigned subjective 
weights of importance to the metric evaluation criteria, and 
also determined how well potential workload metrics met 
each criterion. In the RIM condition, the participants used 
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the click and drag interfaces (Fig. 2) to rank the evaluation 
criteria based on importance, as well as to rank the metrics 
with respect to how well they met the criteria. In the AHP 
condition, participants conducted pair-wise comparisons to 
indicate the relative importance of evaluation criteria, and 
within each criterion they performed pair-wise 
comparisons to identify how well the metrics satisfied the 
criteria (Fig. 1). Instructions were also provided on the 
interfaces as reminders on what to do for each window. 
Since the complete set of written instructions was available 
throughout the experiment, the participants could also refer 
back to them if they needed clarification. 

In AHP, if participants could not meet the consistency 
threshold of 0.1 suggested by Saaty [31], then they were 
presented with a pop-up window indicating their 
inconsistency. The participants were asked to retry and 
change their responses to achieve the suggested 
consistency threshold. However, participants were given 
the ability to skip this step if they felt they had tried 
“many” times but could not reach the threshold value. The 
ability to skip was deemed important since we observed in 
pilot testing that participants would get frustrated to the 
point that they wanted to quit the experiment. The details 
on consistency checks were included in the written 
instructions and were also demonstrated to the participants 
before they started the AHP trial. 

After completing the session with the first interface, the 
participants read the instructions for the next method (AHP 
or RIM) and completed their second test session using the 
next interface.   

The experimental tasks for the multiple metric selection 
condition were slightly different than the single metric 
selection condition. As previously mentioned, the 
participants in this condition were told that they could 
select more than one metric. These participants were also 
presented with an extra evaluation criterion: type I error. 
This criterion is not relevant for single metric selection, 
however, it can be a negative benefit when selecting 
multiple metrics since analyzing more metrics increases 
the overall type I error. Participants compared this criterion 
to the other criteria in terms of importance. In order to 
assess if participants were aware of how much type I error 
would change with different number of metrics, they were 
also asked to compare the number of workload metrics 
collected (1 to 3) with respect to type I error. 

At the end of the experiment, participants were 
provided with the suggested list of workload metrics 
ranked based on AHP or RIM solutions. In the multiple 
metric selection condition, this list could consist of 
groupings of metrics. For example, the best solution could 
be NASA TLX and secondary task performance. The 
participants were then asked to evaluate the solutions 
provided by AHP and RIM and the initial selection they 
indicated before using the interfaces. This evaluation 
helped us assess if the two methodologies result in 
different selections and if so, which methodology produces 
results regarded to be better by the participants. Post-test 

surveys were administered to assess participant opinions 
about the evaluation criteria and the two methods. 

 
5. EXPERIMENTAL RESULTS 

 
Based on modeling assumptions, mixed linear models 

were built for continuous data, whereas non-parametric 
statistics were utilized to analyze categorical data where 
appropriate (α=.05). 

 
5.1 Selected Metrics 
 

For single metric selection, AHP and RIM in general 
resulted in the same solutions (87%), which also matched 
most of the participants’ initial choices (AHP: 73%, RIM: 
87%). Thus, regardless of the method used, participants 
directed each tool so that the results generally matched 
their expectations.  Participants’ self reported experience 
with the three workload metrics was assessed on a Likert 
scale (1: no experience, 5: expert). Participants in general 
had more experience with secondary task (mean=2.3) and 
NASA TLX (mean=2.3) measures as compared to pupil 
dilation (mean=1.8). There were approximately an equal 
number of participants (n=8) who identified secondary task 
and/or NASA TLX as the metric they have the most 
experience with. Regardless of this previous experience, 10 
out of 15 participants still chose secondary task as their 
initial metric selection rather than NASA TLX, suggesting 
that previous experience did not solely determine the 
selected metric.  

For multiple metric selection, the majority (n=9) of the 
participants selected secondary task and NASA TLX as 
their preferred metrics, which was followed by NASA 
TLX (n=3) as the second most preferred metric. 
Interestingly, contrary to our expectation, many of the 
participants did not choose to collect as many metrics as 
they could. This finding may be due to the experimental 
instructions that highlighted resource limitations. Similar 
to the single metric selection condition, there was no strong 
evidence to suggest that the participants changed their 
selections based on the advice from one or the other 
method. 
 
5.2 Benefit Criteria Weights 
 

The single metric selection condition had five benefit 
criteria (coverage, discrimination power, sensitivity, inter- 
and intra- subject reliability, and non-intrusiveness), 
whereas the multiple metric selection condition had an 
additional criterion (type I error), bringing the total to six. 

In the single metric selection condition, differences in 
benefit weights were observed for both RIM and AHP. For 
RIM, discrimination power and coverage received 
significantly higher weights compared to sensitivity, inter- 
and intra- subject reliability, and non-intrusiveness (F(4, 
56)=3.22, p=.02). For AHP, coverage had a significantly 
higher weight than all other benefit criteria (F(4, 56)=7.99, 
p<.0001). 
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Differences in benefit criteria weights were also 
observed in the multiple metric selection condition. For 
AHP, similar to the single metric selection condition, 
coverage resulted in a higher weight than all other benefit 
criteria (F(5, 75)=21.71, p<.0001). For RIM, although 
coverage and discrimination power had the highest average 
weight estimates, the statistical analysis did not reveal 
significant results (F(5, 75)=1.78, p=.13).  

To summarize, participants generally considered 
coverage and discrimination power as the most important 
among other benefit criteria. Therefore, if a metric was 
considered to have high coverage or discrimination power, 
it was more likely to be preferred. The underlying 
theoretical reasons for this weighting scheme are unclear 
and this area deserves further research focus. 

 
5.3 Type I Error 
 

In this experiment, we focused on type I error as a way 
of assessing if researchers think about the more hidden 
ramifications of collecting multiple metrics aside from 
monetary or time costs.   

In the multiple metric selection condition, as part of 
RIM and AHP, participants were asked to rate how having 
one, two, or three metrics would affect overall resulting 
type I error. Six participants out of the 16 total incorrectly 
indicated that either the overall type I error would not be 
impacted (n=1) or the type I error would increase as the 
number of metrics decrease (n=5). Three of these six 
participants repeated their mistake twice, once with RIM 
and once with AHP. There were no particular common 
characteristics for the participants who repeated their 
mistake. It is unclear if the incorrect responses regarding 
type I error were due to slips or mistakes. That is, they 
could be either due to a failure to follow the interface 
instructions or a lack of knowledge. Regardless of the 
cause, a fallacy of both methods is that the outputs from 
AHP and RIM are only as good as the information 
provided to them. 

 
5.4 Subjective Ratings 
 

The evaluation criteria received an average usefulness 
rating of 4.4 (1-lowest, 5-highest). There was one response 
with a rating of 3, 18 responses of 4, and 12 responses of 5.  

Participants were also asked a list of 1-5 Likert scale 
questions to assess their understanding and perceived 
usefulness for the two methods. Table 2 presents statistical 
results comparing participant ratings with respect to being 
less than or equal to average vs. being above average (χ2). 
Overall, participants’ ratings for RIM indicated greater 
than average perceived usefulness, understandability, and 
worthiness of their time. For AHP, these responses were 
not significant, except a marginally significant result 
assigned to understandability. 

 

Table 2: Subjective ratings on method usefulness, understanding 
(* significant at α=.05) 

  1 
Low 

2 
 

3 
Avg. 

4 
 

5 
High 

χ2 (p-value) 
(4-5 vs. 1-3) 

Usefulness 
AHP 0 6 7 10 8 .81 (.47) 

RIM 0 3 5 17 6 7.26 (.01)* 

Worth the 
time 

AHP 1 6 6 15 3 .81 (.47) 

RIM 0 2 6 20 3 7.25 (.01)* 

Understand 
method 

AHP 2 1 7 10 11 3.9 (.07) 

RIM 0 1 8 8 14 5.45 (.03)* 

 
5.5 Time for Metric Selection 
 

Significant differences were observed on how long it 
took the participants to select their metric(s). AHP took on 
average 435 sec longer than RIM (95% CI: 307, 562), a 
73% increase. There was no interaction effect, hence 
regardless of the method used, the second trial took on 
average 214 sec shorter than the first trial (95% CI: 127, 
301), a 23% decrease. This finding was expected since 
both conditions used the same scenario.  

 
5.6 AHP Consistency Conformance 
 

Consistency was only an issue when evaluating three or 
more elements through pairwise comparisons. On average, 
participants were prompted to retry on 48% of such 
instances (stdev=20%). On average, the maximum number 
of times they had to retry in a single instance was 4.8 
(stdev=3.2, min=1, max=14). 

When the participants were prompted to retry at least 
once, they skipped without achieving the suggested 
consistency threshold on average 38% of the time 
(stdev=39%). Out of the 31 total participants, 11 retried 
until they achieved consistency (0% skip), whereas 5 chose 
to skip 100% of the time either after some retrials or none. 
The rest skipped occasionally with skip rates ranging from 
8% to 86%. The skipping consistency values were on 
average 0.22 (stdev=0.13, max=0.65). The participants 
who skipped 100% of the time had an average age of 49, 
whereas the participants who tried until they reached 
consistency were younger (average age: 29). Experience 
with workload metrics were similar across the two groups 
(t(14)=0.27, p=.8).  

 
5.7 Open-ended Comments on AHP and RIM 
 

At the end of the experiment, participants were 
specifically asked to write down positive and negative 
aspects they identified with AHP and RIM.  

The majority of the positive AHP comments addressed 
the pairwise comparisons (n=12 or 40% of participants). 
Thirteen percent of participants indicated that AHP made 
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them think longer and in more detail (n=4). Twenty three 
percent liked consistency checks (n=7), whereas 16% (n=5) 
identified them to be frustrating. Thus, the views on 
consistency checks were split. Thirty percent thought that 
AHP was too complicated (n=11), and 16% identified it as 
time consuming (n=5).  

The positive aspects of RIM cited commonly were ease 
of use (n=10 or 32% of participants), ease of visualizing 
responses (n=9 or 29% of participants), speed (n=8 or 26% 
of participants), and simplicity (n=5 or 16% of 
participants). The total number of negative responses for 
RIM (n=11) was fewer than the total number of negative 
responses for AHP (n=32). A few participants indicated 
that they did not think critically at times (n=3 or 10% of 
participants). The 10-point rating scale was deemed hard 
by a few participants (n=3 or 10% of participants). 

 
6. DISCUSSION 

 
This paper presents an approach for helping 

experimenters select an efficient set of metrics for 
evaluating UV supervisory control. The metric evaluation 
criteria and the relevant cost-benefit parameters presented 
are guidelines only. It should be noted that there is not a 
single set of metrics that are efficient across all 
applications. Research-specific aspects such as available 
resources and the questions of interest will ultimately 
determine the relative metric quality.  

Two different methods to develop principled subjective 
weights were identified and evaluated through an 
experiment with human factors practitioners: AHP and 
RIM. In order to keep the experiments short, participants 
were asked to evaluate only three workload metrics. 
Overall, the participants rated RIM to be more useful, 
easier to understand, and worth their time. AHP took a 
significantly longer time, and some participants considered 
it to be time consuming. In reality, researchers not only 
have to choose from a large number of metrics but they 
also ideally have to choose from a large number of 
constructs (e.g., performance, workload, etc.). Because 
AHP requires pairwise comparisons between all potential 
metrics, each additional potential metric would drastically 
increase the time required to perform AHP. Thus, the 
appropriateness of AHP selecting from a large set of 
potential metrics is questionable.  

Another AHP problem revealed from the experiment is 
user frustration and/or lack of conformance to consistency 
checks. All participants experienced consistency issues 
where they could not meet the consistency threshold 
suggested by the AHP inventor, Saaty [31]. Some 
participants skipped achieving consistency 100% of the 
time, whereas some retried until they achieved the 
threshold. The participants who tried to achieve the 
threshold indicated that at times they forgot about what 
they were evaluating, and instead focused on tweaking 
their responses to obtain a value less than 0.1. In addition, 
some participants indicated that pairwise comparisons 
made them lose the big picture. These issues are potential 

concerns with any method that utilizes pairwise 
comparisons for assessing subjective responses (e.g., 
NASA TLX).  

When it came to the metrics selected, the majority of 
participants’ initial metric selections matched the solutions 
proposed by AHP and/or RIM. Thus, no substantial 
benefits were observed for either of the methods. Even if 
these methods use mathematical formulas to obtain cost 
benefit functions, they are inherently subjective as users 
provide most of the information that goes in the cost 
benefit functions. Therefore, if the user inputs incorrect 
information, either by a slip or a mistake, the methods may 
provide flawed results.  

For example, participants were asked to indicate the 
effects of additional metrics on the overall type I error. 
Responses from 37% erroneously suggested that type I 
error decreases with additional metrics analyzed. 
Combined with the weight of importance for type I error, 
this erroneous information was included in AHP and RIM 
calculations. But because type I error was only one 
criterion among many and its weight of importance was 
not very high, the final solutions of AHP and RIM were 
not drastically influenced by the incorrect inputs.  

While using AHP and RIM, participants referred back 
to the criteria several times as observed by the 
experimenter. Approaches like AHP and RIM have the 
potential to help researchers select metrics by considering 
many attributes that they may not consider otherwise. Thus, 
it is essential to provide better information to researchers in 
terms of how they could view the costs and benefits of a 
specific metric, before providing them with a mathematical 
tool that predicts what the best set of metrics would be. 
However, a mathematical tool might still prove to be useful 
when selecting metrics from various alternatives. The 
experiment presented in this paper focused on selecting 
from three alternatives only. With more possible 
alternatives in more complicated experiments, decision 
making becomes more complex, potentially warranting a 
decision support tool.  

When selecting from a few workload metrics, time to 
complete AHP was reasonable, but RIM was much faster 
to use. Thus, for evaluating a larger set of metrics and 
more metrics of different types, RIM appears to be more 
appropriate. However, the acceptance and effectiveness of 
RIM for evaluating a larger set of metrics is currently 
unclear and should be investigated in the future. Future 
experiments with subject matter experts can evaluate the 
effectiveness and acceptance of RIM for the same 
hypothetical experiment used in the current study but with 
a larger metric set to choose from (e.g., performance and 
workload). Moreover, the underlying methodology for 
RIM can be modified in order to support metric selection 
when evaluating metrics from multiple classes. For 
example, a penalty can be introduced to avoid selecting 
metrics from the same class rather than selecting metrics 
from different classes. Determining such modifications in 
the RIM methodology is another point for future research. 
An experiment comparing RIM with and without such a 
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modification can provide insights into the effectiveness of 
the modification.  

 
7. CONCLUSION 

 
Recent dramatic advances in the unmanned vehicle 

domain are not just limited to military operations as the 
international civil sector is now looking to such unmanned 
technologies to aid operations such as fighting forest fires, 
undersea exploration, monitoring wildlife, inspecting 
bridges, and supporting first responders such as police and 
rescue. UAV expenditures alone are predicted to more than 
double in the next ten years, and are expected to exceed 
$80 billion [36]. 

Accompanying such rapid technological advancements 
is the need to evaluate not just the technology, but also the 
human-automation interaction. Without principled 
evaluation approaches to what fundamentally is an 
interdisciplinary system of systems endeavor, resulting 
technologies could fall short of expectations or potentially 
cause significant setbacks. 

Towards this concept of principled evaluation, we 
identified five evaluation criteria (experimental constraints, 
comprehensive understanding, construct validity, statistical 
efficiency, and measurement technique efficiency) that 
should be considered when evaluating such unmanned 
systems. However, while this paper focused on human 
supervisory control of UVs (including human-robot 
interaction), our approach and many of the findings and 
recommendations apply more broadly to human 
performance evaluation. While these evaluation criteria 
may not be comprehensive for all domains, they can still 
be used as a guideline for assessing a metric’s quality.    
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